def next_job(self, job):
        '''Sends a finished job back to the coordinator and retrieves in exchange the next one.

        Kwargs:
            job (WorkerJob): job that was finished by a worker and who's results are to be
                digested by the coordinator

        Returns:
            WorkerJob. next job of one of the running epochs that will get
                associated with the worker from the finished job and put into state 'running'
        '''
        if self.is_chief:
            # Try to find the epoch the job belongs to
            epoch = next((epoch for epoch in self._epochs_running if epoch.id == job.epoch_id), None)
            if epoch:
                # We are going to manipulate things - let's avoid undefined state
                with self._lock:
                    # Let the epoch finish the job
                    epoch.finish_job(job)
                    # Check, if epoch is done now
                    if epoch.done():
                        # If it declares itself done, move it from 'running' to 'done' collection
                        self._epochs_running.remove(epoch)
                        self._epochs_done.append(epoch)
                        log_info('%s' % epoch)
            else:
                # There was no running epoch found for this job - this should never happen.
                log_error('There is no running epoch of ID %d for job with ID %d. This should never happen.' % (job.epoch_id, job.id))
            return self.get_job(job.worker)

        # We are a remote worker and have to hand over to the chief worker by HTTP
        result = self._talk_to_chief('', data=pickle.dumps(job))
        if result:
            result = pickle.loads(result)
        return result
Example #2
0
def main(_):
    initialize_globals()

    if not FLAGS.test_files:
        log_error('You need to specify what files to use for evaluation via '
                  'the --test_files flag.')
        exit(1)

    # sort examples by length, improves packing of batches and timesteps
    test_data = preprocess(FLAGS.test_files.split(','),
                           FLAGS.test_batch_size,
                           alphabet=Config.alphabet,
                           numcep=Config.n_input,
                           numcontext=Config.n_context,
                           hdf5_cache_path=FLAGS.hdf5_test_set).sort_values(
                               by="features_len", ascending=False)

    from DeepSpeech import create_inference_graph
    graph = create_inference_graph(batch_size=FLAGS.test_batch_size,
                                   n_steps=-1)

    samples = evaluate(test_data, graph)

    if FLAGS.test_output_file:
        # Save decoded tuples as JSON, converting NumPy floats to Python floats
        json.dump(samples,
                  open(FLAGS.test_output_file, 'w'),
                  default=lambda x: float(x))
    def get_job(self, worker=0):
        '''Retrieves the first job for a worker.

        Kwargs:
            worker (int): index of the worker to get the first job for

        Returns:
            WorkerJob. a job of one of the running epochs that will get
                associated with the given worker and put into state 'running'
        '''
        # Let's ensure that this does not interfere with other workers/requests
        with self._lock:
            if self.is_chief:
                # First try to get a next job
                job = self._get_job(worker)

                if job is None:
                    # If there was no next job, we give it a second chance by triggering the epoch state machine
                    if self._next_epoch():
                        # Epoch state machine got a new epoch
                        # Second try to get a next job
                        job = self._get_job(worker)
                        if job is None:
                            # Albeit the epoch state machine got a new epoch, the epoch had no new job for us
                            log_error('Unexpected case - no job for worker %d.' % (worker))
                        return job

                    # Epoch state machine has no new epoch
                    # This happens at the end of the whole training - nothing to worry about
                    log_traffic('No jobs left for worker %d.' % (worker))
                    self._log_all_jobs()
                    return None

                # We got a new job from one of the currently running epochs
                log_traffic('Got new %s' % job)
                return job

            # We are a remote worker and have to hand over to the chief worker by HTTP
            result = self._talk_to_chief(PREFIX_GET_JOB + str(FLAGS.task_index))
            if result:
                result = pickle.loads(result)
            return result
def do_single_file_inference(input_file_path):
    tf.reset_default_graph()
    with tf.Session(config=Config.session_config) as session:
        inputs, outputs, layers = create_inference_graph(batch_size=1, n_steps=-1)

        # REVIEW josephz: Hack: print all layers here.
        for i, l in enumerate(layers):
            print("layer '{}': '{}'".format(i, l))

        # Create a saver using variables from the above newly created graph
        mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
        saver = tf.train.Saver(mapping)

        # Restore variables from training checkpoint
        # TODO: This restores the most recent checkpoint, but if we use validation to counteract
        #       over-fitting, we may want to restore an earlier checkpoint.
        checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if not checkpoint:
            log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
            exit(1)

        checkpoint_path = checkpoint.model_checkpoint_path
        saver.restore(session, checkpoint_path)

        session.run(outputs['initialize_state'])

        features = audiofile_to_input_vector(input_file_path, Config.n_input, Config.n_context)
        num_strides = len(features) - (Config.n_context * 2)

        # Create a view into the array with overlapping strides of size
        # numcontext (past) + 1 (present) + numcontext (future)
        window_size = 2*Config.n_context+1
        features = np.lib.stride_tricks.as_strided(
            features,
            (num_strides, window_size, Config.n_input),
            (features.strides[0], features.strides[0], features.strides[1]),
            writeable=False)

        # logits = session.run(outputs['outputs'], feed_dict = {
        #     inputs['input']: [features],
        #     inputs['input_lengths']: [num_strides],
        # })

        name_mapping = {
            'layer_1': 'Minimum:0',
            'layer_2': 'Minimum_1:0',
            'layer_3': 'Minimum_2:0',
            'layer_5': 'Minimum_3:0',
            'layer_6': 'Add_4:0'
        }
        output_tensors = [tensor for l, tensor in name_mapping.items()]
        outputs = session.run(output_tensors, feed_dict={
            inputs['input']: [features],
            inputs['input_lengths']: [num_strides],
        })

        # output_path = '/home/josephz/GoogleDrive/University/UW/2018-19/CSE481I/singing-style' \
                      # '-transfer/src/extern/DeepSpeech/scripts/cover'
        # output_path = FLAGS.np_output_path
        # if not os.path.isdir(output_path):
            # os.mkdir(output_path)
        # assert os.path.isdir(output_path)
        intermediate_layers = {}
        for tensor_name, output in zip(name_mapping.keys(), outputs):
            # print("\toutputting thing of shape '{}' to '{}'".format(output.shape,
                # os.path.basename(output_path)))
            # np.save(os.path.join(output_path, tensor_name), output)
            intermediate_layers[tensor_name] = output
        return intermediate_layers
def export():
    r'''
    Restores the trained variables into a simpler graph that will be exported for serving.
    '''
    log_info('Exporting the model...')
    with tf.device('/cpu:0'):
        from tensorflow.python.framework.ops import Tensor, Operation

        tf.reset_default_graph()
        session = tf.Session(config=Config.session_config)

        inputs, outputs, _ = create_inference_graph(batch_size=1, n_steps=FLAGS.n_steps, tflite=FLAGS.export_tflite)
        input_names = ",".join(tensor.op.name for tensor in inputs.values())
        output_names_tensors = [ tensor.op.name for tensor in outputs.values() if isinstance(tensor, Tensor) ]
        output_names_ops = [ tensor.name for tensor in outputs.values() if isinstance(tensor, Operation) ]
        output_names = ",".join(output_names_tensors + output_names_ops)
        input_shapes = ":".join(",".join(map(str, tensor.shape)) for tensor in inputs.values())

        if not FLAGS.export_tflite:
            mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
        else:
            # Create a saver using variables from the above newly created graph
            def fixup(name):
                if name.startswith('rnn/lstm_cell/'):
                    return name.replace('rnn/lstm_cell/', 'lstm_fused_cell/')
                return name

            mapping = {fixup(v.op.name): v for v in tf.global_variables()}

        saver = tf.train.Saver(mapping)

        # Restore variables from training checkpoint
        checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        checkpoint_path = checkpoint.model_checkpoint_path

        output_filename = 'output_graph.pb'
        if FLAGS.remove_export:
            if os.path.isdir(FLAGS.export_dir):
                log_info('Removing old export')
                shutil.rmtree(FLAGS.export_dir)
        try:
            output_graph_path = os.path.join(FLAGS.export_dir, output_filename)

            if not os.path.isdir(FLAGS.export_dir):
                os.makedirs(FLAGS.export_dir)

            def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=None):
                freeze_graph.freeze_graph_with_def_protos(
                    input_graph_def=session.graph_def,
                    input_saver_def=saver.as_saver_def(),
                    input_checkpoint=checkpoint_path,
                    output_node_names=output_node_names,
                    restore_op_name=None,
                    filename_tensor_name=None,
                    output_graph=output_file,
                    clear_devices=False,
                    variable_names_blacklist=variables_blacklist,
                    initializer_nodes='')

            if not FLAGS.export_tflite:
                do_graph_freeze(output_file=output_graph_path, output_node_names=output_names, variables_blacklist='previous_state_c,previous_state_h')
            else:
                temp_fd, temp_freeze = tempfile.mkstemp(dir=FLAGS.export_dir)
                os.close(temp_fd)
                do_graph_freeze(output_file=temp_freeze, output_node_names=output_names, variables_blacklist='')
                output_tflite_path = os.path.join(FLAGS.export_dir, output_filename.replace('.pb', '.tflite'))
                class TFLiteFlags():
                    def __init__(self):
                        self.graph_def_file = temp_freeze
                        self.inference_type = 'FLOAT'
                        self.input_arrays   = input_names
                        self.input_shapes   = input_shapes
                        self.output_arrays  = output_names
                        self.output_file    = output_tflite_path
                        self.output_format  = 'TFLITE'

                        default_empty = [
                            'inference_input_type',
                            'mean_values',
                            'default_ranges_min', 'default_ranges_max',
                            'drop_control_dependency',
                            'reorder_across_fake_quant',
                            'change_concat_input_ranges',
                            'allow_custom_ops',
                            'converter_mode',
                            'post_training_quantize',
                            'dump_graphviz_dir',
                            'dump_graphviz_video'
                        ]
                        for e in default_empty:
                            self.__dict__[e] = None

                flags = TFLiteFlags()
                tflite_convert._convert_model(flags)
                os.unlink(temp_freeze)
                log_info('Exported model for TF Lite engine as {}'.format(os.path.basename(output_tflite_path)))

            log_info('Models exported at %s' % (FLAGS.export_dir)) 
        except RuntimeError as e:
            log_error(str(e))
def train(server=None):
    r'''
    Trains the network on a given server of a cluster.
    If no server provided, it performs single process training.
    '''

    # Initializing and starting the training coordinator
    coord = TrainingCoordinator(Config.is_chief)
    coord.start()

    # Create a variable to hold the global_step.
    # It will automagically get incremented by the optimizer.
    global_step = tf.Variable(0, trainable=False, name='global_step')

    dropout_rates = [tf.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]

    # Reading training set
    train_data = preprocess(FLAGS.train_files.split(','),
                            FLAGS.train_batch_size,
                            Config.n_input,
                            Config.n_context,
                            Config.alphabet,
                            hdf5_cache_path=FLAGS.train_cached_features_path)

    train_set = DataSet(train_data,
                        FLAGS.train_batch_size,
                        limit=FLAGS.limit_train,
                        next_index=lambda i: coord.get_next_index('train'))

    # Reading validation set
    dev_data = preprocess(FLAGS.dev_files.split(','),
                          FLAGS.dev_batch_size,
                          Config.n_input,
                          Config.n_context,
                          Config.alphabet,
                          hdf5_cache_path=FLAGS.dev_cached_features_path)

    dev_set = DataSet(dev_data,
                      FLAGS.dev_batch_size,
                      limit=FLAGS.limit_dev,
                      next_index=lambda i: coord.get_next_index('dev'))

    # Combining all sets to a multi set model feeder
    model_feeder = ModelFeeder(train_set,
                               dev_set,
                               Config.n_input,
                               Config.n_context,
                               Config.alphabet,
                               tower_feeder_count=len(Config.available_devices))

    # Create the optimizer
    optimizer = create_optimizer()

    # Synchronous distributed training is facilitated by a special proxy-optimizer
    if not server is None:
        optimizer = tf.train.SyncReplicasOptimizer(optimizer,
                                                   replicas_to_aggregate=FLAGS.replicas_to_agg,
                                                   total_num_replicas=FLAGS.replicas)

    # Get the data_set specific graph end-points
    gradients, loss = get_tower_results(model_feeder, optimizer, dropout_rates)

    # Average tower gradients across GPUs
    avg_tower_gradients = average_gradients(gradients)

    # Add summaries of all variables and gradients to log
    log_grads_and_vars(avg_tower_gradients)

    # Op to merge all summaries for the summary hook
    merge_all_summaries_op = tf.summary.merge_all()

    # These are saved on every step
    step_summaries_op = tf.summary.merge_all('step_summaries')

    step_summary_writers = {
        'train': tf.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'train'), max_queue=120),
        'dev': tf.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120)
    }

    # Apply gradients to modify the model
    apply_gradient_op = optimizer.apply_gradients(avg_tower_gradients, global_step=global_step)


    if FLAGS.early_stop is True and not FLAGS.validation_step > 0:
        log_warn('Parameter --validation_step needs to be >0 for early stopping to work')

    class CoordHook(tf.train.SessionRunHook):
        r'''
        Embedded coordination hook-class that will use variables of the
        surrounding Python context.
        '''
        def after_create_session(self, session, coord):
            log_debug('Starting queue runners...')
            model_feeder.start_queue_threads(session, coord)
            log_debug('Queue runners started.')

        def end(self, session):
            # Closing the data_set queues
            log_debug('Closing queues...')
            model_feeder.close_queues(session)
            log_debug('Queues closed.')

            # Telling the ps that we are done
            send_token_to_ps(session)

    # Collecting the hooks
    hooks = [CoordHook()]

    # Hook to handle initialization and queues for sync replicas.
    if not server is None:
        hooks.append(optimizer.make_session_run_hook(Config.is_chief))

    # Hook to save TensorBoard summaries
    if FLAGS.summary_secs > 0:
        hooks.append(tf.train.SummarySaverHook(save_secs=FLAGS.summary_secs, output_dir=FLAGS.summary_dir, summary_op=merge_all_summaries_op))

    # Hook wih number of checkpoint files to save in checkpoint_dir
    if FLAGS.train and FLAGS.max_to_keep > 0:
        saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)
        hooks.append(tf.train.CheckpointSaverHook(checkpoint_dir=FLAGS.checkpoint_dir, save_secs=FLAGS.checkpoint_secs, saver=saver))

    no_dropout_feed_dict = {
        dropout_rates[0]: 0.,
        dropout_rates[1]: 0.,
        dropout_rates[2]: 0.,
        dropout_rates[3]: 0.,
        dropout_rates[4]: 0.,
        dropout_rates[5]: 0.,
    }

    # Progress Bar
    def update_progressbar(set_name):
        if not hasattr(update_progressbar, 'current_set_name'):
            update_progressbar.current_set_name = None

        if (update_progressbar.current_set_name != set_name or
            update_progressbar.current_job_index == update_progressbar.total_jobs):

            # finish prev pbar if it exists
            if hasattr(update_progressbar, 'pbar') and update_progressbar.pbar:
                update_progressbar.pbar.finish()

            update_progressbar.total_jobs = None
            update_progressbar.current_job_index = 0

            current_epoch = coord._epoch-1

            if set_name == "train":
                log_info('Training epoch %i...' % current_epoch)
                update_progressbar.total_jobs = coord._num_jobs_train
            else:
                log_info('Validating epoch %i...' % current_epoch)
                update_progressbar.total_jobs = coord._num_jobs_dev

            # recreate pbar
            update_progressbar.pbar = progressbar.ProgressBar(max_value=update_progressbar.total_jobs,
                                                              redirect_stdout=True).start()

            update_progressbar.current_set_name = set_name

        if update_progressbar.pbar:
            update_progressbar.pbar.update(update_progressbar.current_job_index+1, force=True)

        update_progressbar.current_job_index += 1

    # Initialize update_progressbar()'s child fields to safe values
    update_progressbar.pbar = None

    # The MonitoredTrainingSession takes care of session initialization,
    # restoring from a checkpoint, saving to a checkpoint, and closing when done
    # or an error occurs.
    try:
        with tf.train.MonitoredTrainingSession(master='' if server is None else server.target,
                                               is_chief=Config.is_chief,
                                               hooks=hooks,
                                               checkpoint_dir=FLAGS.checkpoint_dir,
                                               save_checkpoint_secs=None, # already taken care of by a hook
                                               log_step_count_steps=0, # disable logging of steps/s to avoid TF warning in validation sets
                                               config=Config.session_config) as session:
            tf.get_default_graph().finalize()

            try:
                if Config.is_chief:
                    # Retrieving global_step from the (potentially restored) model
                    model_feeder.set_data_set(no_dropout_feed_dict, model_feeder.train)
                    step = session.run(global_step, feed_dict=no_dropout_feed_dict)
                    coord.start_coordination(model_feeder, step)

                # Get the first job
                job = coord.get_job()

                while job and not session.should_stop():
                    log_debug('Computing %s...' % job)

                    is_train = job.set_name == 'train'

                    # The feed_dict (mainly for switching between queues)
                    if is_train:
                        feed_dict = {
                            dropout_rates[0]: FLAGS.dropout_rate,
                            dropout_rates[1]: FLAGS.dropout_rate2,
                            dropout_rates[2]: FLAGS.dropout_rate3,
                            dropout_rates[3]: FLAGS.dropout_rate4,
                            dropout_rates[4]: FLAGS.dropout_rate5,
                            dropout_rates[5]: FLAGS.dropout_rate6,
                        }
                    else:
                        feed_dict = no_dropout_feed_dict

                    # Sets the current data_set for the respective placeholder in feed_dict
                    model_feeder.set_data_set(feed_dict, getattr(model_feeder, job.set_name))

                    # Initialize loss aggregator
                    total_loss = 0.0

                    # Setting the training operation in case of training requested
                    train_op = apply_gradient_op if is_train else []

                    # So far the only extra parameter is the feed_dict
                    extra_params = { 'feed_dict': feed_dict }

                    step_summary_writer = step_summary_writers.get(job.set_name)

                    # Loop over the batches
                    for job_step in range(job.steps):
                        if session.should_stop():
                            break

                        log_debug('Starting batch...')
                        # Compute the batch
                        _, current_step, batch_loss, step_summary = session.run([train_op, global_step, loss, step_summaries_op], **extra_params)

                        # Log step summaries
                        step_summary_writer.add_summary(step_summary, current_step)

                        # Uncomment the next line for debugging race conditions / distributed TF
                        log_debug('Finished batch step %d.' % current_step)

                        # Add batch to loss
                        total_loss += batch_loss

                    # Gathering job results
                    job.loss = total_loss / job.steps

                    # Display progressbar
                    if FLAGS.show_progressbar:
                        update_progressbar(job.set_name)

                    # Send the current job to coordinator and receive the next one
                    log_debug('Sending %s...' % job)
                    job = coord.next_job(job)

                if update_progressbar.pbar:
                    update_progressbar.pbar.finish()

            except Exception as e:
                log_error(str(e))
                traceback.print_exc()
                # Calling all hook's end() methods to end blocking calls
                for hook in hooks:
                    hook.end(session)
                # Only chief has a SyncReplicasOptimizer queue runner that needs to be stopped for unblocking process exit.
                # A rather graceful way to do this is by stopping the ps.
                # Only one party can send it w/o failing.
                if Config.is_chief:
                    send_token_to_ps(session, kill=True)
                sys.exit(1)

        log_debug('Session closed.')

    except tf.errors.InvalidArgumentError as e:
        log_error(str(e))
        log_error('The checkpoint in {0} does not match the shapes of the model.'
                  ' Did you change alphabet.txt or the --n_hidden parameter'
                  ' between train runs using the same checkpoint dir? Try moving'
                  ' or removing the contents of {0}.'.format(FLAGS.checkpoint_dir))
        sys.exit(1)

    # Stopping the coordinator
    coord.stop()
Example #7
0
def evaluate(test_data, inference_graph):
    scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta, FLAGS.lm_binary_path,
                    FLAGS.lm_trie_path, Config.alphabet)

    def create_windows(features):
        num_strides = len(features) - (Config.n_context * 2)

        # Create a view into the array with overlapping strides of size
        # numcontext (past) + 1 (present) + numcontext (future)
        window_size = 2 * Config.n_context + 1
        features = np.lib.stride_tricks.as_strided(
            features, (num_strides, window_size, Config.n_input),
            (features.strides[0], features.strides[0], features.strides[1]),
            writeable=False)

        return features

    # Create overlapping windows over the features
    test_data['features'] = test_data['features'].apply(create_windows)

    with tf.Session(config=Config.session_config) as session:
        inputs, outputs, layers = inference_graph

        # Transpose to batch major for decoder
        transposed = tf.transpose(outputs['outputs'], [1, 0, 2])

        labels_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size, None],
                                   name="labels")
        label_lengths_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size],
                                          name="label_lengths")

        sparse_labels = tf.cast(
            ctc_label_dense_to_sparse(labels_ph, label_lengths_ph,
                                      FLAGS.test_batch_size), tf.int32)
        loss = tf.nn.ctc_loss(labels=sparse_labels,
                              inputs=layers['raw_logits'],
                              sequence_length=inputs['input_lengths'])

        # Create a saver using variables from the above newly created graph
        mapping = {
            v.op.name: v
            for v in tf.global_variables()
            if not v.op.name.startswith('previous_state_')
        }
        saver = tf.train.Saver(mapping)

        # Restore variables from training checkpoint
        checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if not checkpoint:
            log_error(
                'Checkpoint directory ({}) does not contain a valid checkpoint state.'
                .format(FLAGS.checkpoint_dir))
            exit(1)

        checkpoint_path = checkpoint.model_checkpoint_path
        saver.restore(session, checkpoint_path)

        logitses = []
        losses = []

        print('Computing acoustic model predictions...')
        batch_count = len(test_data) // FLAGS.test_batch_size
        bar = progressbar.ProgressBar(max_value=batch_count,
                                      widget=progressbar.AdaptiveETA)

        # First pass, compute losses and transposed logits for decoding
        for batch in bar(split_data(test_data, FLAGS.test_batch_size)):
            session.run(outputs['initialize_state'])

            features = pad_to_dense(batch['features'].values)
            features_len = batch['features_len'].values
            labels = pad_to_dense(batch['transcript'].values)
            label_lengths = batch['transcript_len'].values

            logits, loss_ = session.run(
                [transposed, loss],
                feed_dict={
                    inputs['input']: features,
                    inputs['input_lengths']: features_len,
                    labels_ph: labels,
                    label_lengths_ph: label_lengths
                })

            logitses.append(logits)
            losses.extend(loss_)

    ground_truths = []
    predictions = []

    print('Decoding predictions...')
    bar = progressbar.ProgressBar(max_value=batch_count,
                                  widget=progressbar.AdaptiveETA)

    # Get number of accessible CPU cores for this process
    try:
        num_processes = cpu_count()
    except:
        num_processes = 1

    # Second pass, decode logits and compute WER and edit distance metrics
    for logits, batch in bar(
            zip(logitses, split_data(test_data, FLAGS.test_batch_size))):
        seq_lengths = batch['features_len'].values.astype(np.int32)
        decoded = ctc_beam_search_decoder_batch(logits,
                                                seq_lengths,
                                                Config.alphabet,
                                                FLAGS.beam_width,
                                                num_processes=num_processes,
                                                scorer=scorer)

        ground_truths.extend(
            Config.alphabet.decode(l) for l in batch['transcript'])
        predictions.extend(d[0][1] for d in decoded)

    distances = [levenshtein(a, b) for a, b in zip(ground_truths, predictions)]

    wer, samples = calculate_report(ground_truths, predictions, distances,
                                    losses)
    mean_edit_distance = np.mean(distances)
    mean_loss = np.mean(losses)

    # Take only the first report_count items
    report_samples = itertools.islice(samples, FLAGS.report_count)

    print('Test - WER: %f, CER: %f, loss: %f' %
          (wer, mean_edit_distance, mean_loss))
    print('-' * 80)
    for sample in report_samples:
        print('WER: %f, CER: %f, loss: %f' %
              (sample.wer, sample.distance, sample.loss))
        print(' - src: "%s"' % sample.src)
        print(' - res: "%s"' % sample.res)
        print('-' * 80)

    return samples
def initialize_globals():
    c = AttrDict()

    # ps and worker hosts required for p2p cluster setup
    FLAGS.ps_hosts = list(filter(len, FLAGS.ps_hosts.split(',')))
    FLAGS.worker_hosts = list(filter(len, FLAGS.worker_hosts.split(',')))

    # Create a cluster from the parameter server and worker hosts.
    c.cluster = tf.train.ClusterSpec({'ps': FLAGS.ps_hosts, 'worker': FLAGS.worker_hosts})

    # The absolute number of computing nodes - regardless of cluster or single mode
    num_workers = max(1, len(FLAGS.worker_hosts))

    # If replica numbers are negative, we multiply their absolute values with the number of workers
    if FLAGS.replicas < 0:
        FLAGS.replicas = num_workers * -FLAGS.replicas
    if FLAGS.replicas_to_agg < 0:
        FLAGS.replicas_to_agg = num_workers * -FLAGS.replicas_to_agg

    # The device path base for this node
    c.worker_device = '/job:%s/task:%d' % (FLAGS.job_name, FLAGS.task_index)

    # This node's CPU device
    c.cpu_device = c.worker_device + '/cpu:0'

    # This node's available GPU devices
    c.available_devices = [c.worker_device + gpu for gpu in get_available_gpus()]

    # If there is no GPU available, we fall back to CPU based operation
    if 0 == len(c.available_devices):
        c.available_devices = [c.cpu_device]

    # Set default dropout rates
    if FLAGS.dropout_rate2 < 0:
        FLAGS.dropout_rate2 = FLAGS.dropout_rate
    if FLAGS.dropout_rate3 < 0:
        FLAGS.dropout_rate3 = FLAGS.dropout_rate
    if FLAGS.dropout_rate6 < 0:
        FLAGS.dropout_rate6 = FLAGS.dropout_rate

    # Set default checkpoint dir
    if len(FLAGS.checkpoint_dir) == 0:
        FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join('deepspeech','checkpoints'))

    # Set default summary dir
    if len(FLAGS.summary_dir) == 0:
        FLAGS.summary_dir = xdg.save_data_path(os.path.join('deepspeech','summaries'))

    # Standard session configuration that'll be used for all new sessions.
    c.session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_placement,
                                      inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
                                      intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads)

    c.alphabet = Alphabet(os.path.abspath(FLAGS.alphabet_config_path))

    # Geometric Constants
    # ===================

    # For an explanation of the meaning of the geometric constants, please refer to
    # doc/Geometry.md

    # Number of MFCC features
    c.n_input = 26 # TODO: Determine this programmatically from the sample rate

    # The number of frames in the context
    c.n_context = 9 # TODO: Determine the optimal value using a validation data set

    # Number of units in hidden layers
    c.n_hidden = FLAGS.n_hidden

    c.n_hidden_1 = c.n_hidden

    c.n_hidden_2 = c.n_hidden

    c.n_hidden_5 = c.n_hidden

    # LSTM cell state dimension
    c.n_cell_dim = c.n_hidden

    # The number of units in the third layer, which feeds in to the LSTM
    c.n_hidden_3 = c.n_cell_dim

    # Units in the sixth layer = number of characters in the target language plus one
    c.n_hidden_6 = c.alphabet.size() + 1 # +1 for CTC blank label

    # Queues that are used to gracefully stop parameter servers.
    # Each queue stands for one ps. A finishing worker sends a token to each queue before joining/quitting.
    # Each ps will dequeue as many tokens as there are workers before joining/quitting.
    # This ensures parameter servers won't quit, if still required by at least one worker and
    # also won't wait forever (like with a standard `server.join()`).
    done_queues = []
    for i, ps in enumerate(FLAGS.ps_hosts):
        # Queues are hosted by their respective owners
        with tf.device('/job:ps/task:%d' % i):
            done_queues.append(tf.FIFOQueue(1, tf.int32, shared_name=('queue%i' % i)))

    # Placeholder to pass in the worker's index as token
    c.token_placeholder = tf.placeholder(tf.int32)

    # Enqueue operations for each parameter server
    c.done_enqueues = [queue.enqueue(c.token_placeholder) for queue in done_queues]

    # Dequeue operations for each parameter server
    c.done_dequeues = [queue.dequeue() for queue in done_queues]

    if len(FLAGS.one_shot_infer) > 0:
        FLAGS.train = False
        FLAGS.test = False
        FLAGS.export_dir = ''
        if not os.path.exists(FLAGS.one_shot_infer):
            log_error('Path specified in --one_shot_infer is not a valid file.')
            exit(1)

    # Determine, if we are the chief worker
    c.is_chief = len(FLAGS.worker_hosts) == 0 or (FLAGS.task_index == 0 and FLAGS.job_name == 'worker')

    ConfigSingleton._config = c