Example #1
0
def pre_process_dataset(image_dir, qjson, ajson, img_prefix):
    print('Preprocessing datatset. \n')
    vqa = VQA(ajson, qjson)

    img_names = [f for f in os.listdir(image_dir) if '.jpg' in f]
    img_ids = []
    for fname in img_names:
        img_id = fname.split('.')[0].rpartition(img_prefix)[-1]
        img_ids.append(int(img_id))

    ques_ids = vqa.getQuesIds(img_ids)

    q2i = defaultdict(lambda: len(q2i))
    pad = q2i["<pad>"]
    start = q2i["<sos>"]
    end = q2i["<eos>"]
    UNK = q2i["<unk>"]

    a2i_count = {}
    for ques_id in ques_ids:
        qa = vqa.loadQA(ques_id)[0]
        qqa = vqa.loadQQA(ques_id)[0]

        ques = qqa['question'][:-1]
        [q2i[x] for x in ques.lower().strip().split(" ")]

        answers = qa['answers']
        for ans in answers:
            if not ans['answer_confidence'] == 'yes':
                continue
            ans = ans['answer'].lower()
            if ans not in a2i_count:
                a2i_count[ans] = 1
            else:
                a2i_count[ans] = a2i_count[ans] + 1

    a_sort = sorted(a2i_count.items(),
                    key=operator.itemgetter(1),
                    reverse=True)

    i2a = {}
    count = 0
    a2i = defaultdict(lambda: len(a2i))
    for word, _ in a_sort:
        a2i[word]
        i2a[a2i[word]] = word
        count = count + 1
        if count == 1000:
            break

    return q2i, a2i, i2a, a2i_count
Example #2
0
class VqaDataset(Dataset):
    """
    Load the VQA dataset using the VQA python API. We provide the necessary subset in the External folder, but you may
    want to reference the full repo (https://github.com/GT-Vision-Lab/VQA) for usage examples.
    """
    def __init__(self,
                 image_dir,
                 question_json_file_path,
                 annotation_json_file_path,
                 image_filename_pattern,
                 collate=False,
                 q2i=None,
                 a2i=None,
                 i2a=None,
                 img_names=None,
                 img_ids=None,
                 ques_ids=None,
                 method='simple',
                 dataset_type='train',
                 enc_dir=''):
        """
        Args:
            image_dir (string): Path to the directory with COCO images
            question_json_file_path (string): Path to the json file containing the question data
            annotation_json_file_path (string): Path to the json file containing the annotations mapping images, questions, and
                answers together
            image_filename_pattern (string): The pattern the filenames of images in this dataset use (eg "COCO_train2014_{}.jpg")
        """
        print(method)
        self.image_dir = image_dir
        self.qjson = question_json_file_path
        self.ajson = annotation_json_file_path
        img_prefix = image_filename_pattern.split('{}')[0]
        self.collate = collate
        self.q2i = q2i
        self.a2i = a2i
        self.i2a = i2a
        #self.a2i_count = a2i_count
        self.img_ids = img_ids
        self.ques_ids = ques_ids
        self.img_names = img_names
        self.method = method
        self.vqa = VQA(self.ajson, self.qjson)

        if self.method == 'simple':
            self.transform = transforms.Compose(
                [transforms.Resize((224, 224)),
                 transforms.ToTensor()])
        else:
            self.transform = transforms.Compose(
                [transforms.Resize((448, 448)),
                 transforms.ToTensor()])

        #if not collate:
        #    self.img_names = [f for f in os.listdir(self.image_dir) if '.jpg' in f]
        #    self.img_ids = []
        #    for fname in self.img_names:
        #        img_id = fname.split('.')[0].rpartition(img_prefix)[-1]
        #        self.img_ids.append(int(img_id))

        #    self.ques_ids = self.vqa.getQuesIds(self.img_ids)

        #    self.q2i, self.a2i, self.i2a, self.a2i_count = pre_process_dataset(image_dir, self.qjson,
        #                                                                       self.ajson, img_prefix)

        self.q2i_len = len(self.q2i)
        self.a2i_len = len(self.a2i.keys())
        self.q2i_keys = self.q2i.keys()
        self.enc_dir = enc_dir

        #if collate and dataset_type == 'train':
        #    with open('/home/ubuntu/hw3_release/data/train_enc_idx.npy', 'rb') as f:
        #        self.enc_idx = pickle.load(f)
        #elif collate and dataset_type == 'val':
        #    with open('/home/ubuntu/hw3_release/data/val_enc_idx.npy', 'rb') as f:
        #        self.enc_idx = pickle.load(f)

    def __len__(self):
        return len(self.ques_ids)

    def __getitem__(self, idx):
        ques_id = self.ques_ids[idx]
        img_id = self.vqa.getImgIds([ques_id])[0]

        qa = self.vqa.loadQA(ques_id)[0]
        qqa = self.vqa.loadQQA(ques_id)[0]
        img_name = self.img_names[self.img_ids.index(img_id)]

        if self.method == 'simple':
            img = default_loader(self.image_dir + '/' + img_name)
            #imgT = self.transform(img).permute(1, 2, 0)
            imgT = self.transform(img).float()
        else:
            #file_idx = self.enc_idx[img_id] // 50
            #arr_idx = self.enc_idx[img_id] % 50
            #path = self.enc_dir + '/' + str(file_idx) + '.npz'
            #img = np.load(path)['out'][arr_idx, :, :]               # 512 x 196
            #imgT = torch.from_numpy(img).float()

            img = default_loader(self.image_dir + '/' + img_name)
            imgT = self.transform(img).float()

        ques = qqa['question'][:-1]
        quesI = [self.q2i["<sos>"]] + [
            self.q2i[x.lower()]
            for x in ques.split(" ") if x.lower() in self.q2i_keys
        ] + [self.q2i["<eos>"]]
        if not self.collate:
            quesI = quesI + [self.q2i["<pad>"]] * (8 - len(quesI))
        if self.method == 'simple':
            quesT = torch.zeros(self.q2i_len).float()
            for idx in quesI:
                quesT[idx] = 1
        else:
            quesT = torch.from_numpy(np.array(quesI)).long()

        answers = qa['answers']
        max_count = 0
        answer = ""
        for ans in answers:
            #if not ans['answer_confidence'] == 'yes':
            #    continue
            ans = ans['answer'].lower()
            if ans in self.a2i.keys():  # and self.a2i_count[ans] > max_count:
                #max_count = self.a2i_count[ans]
                answer = ans

        if answer == "":  # only for validation
            gT = torch.from_numpy(np.array([self.a2i_len])).long()
        else:
            gT = torch.from_numpy(np.array([self.a2i[answer]])).long()

        #print("ds: quesT", quesT.shape, quesT)
        #print("ds: gT", gT.shape)
        #print("ds: imgT", imgT.shape)

        if not self.collate:
            return {'img': imgT, 'ques': quesT, 'gt': gT}

        return imgT, quesT, gT
Example #3
0
for fname in img_names:
    img_id = fname.split('.')[0].rpartition(img_prefix)[-1]
    img_ids.append(int(img_id))

ques_ids = vqa.getQuesIds(img_ids)

q2i = defaultdict(lambda: len(q2i))
pad = q2i["<pad>"]
start = q2i["<sos>"]
end = q2i["<eos>"]
UNK = q2i["<unk>"]

a2i_count = {}
for ques_id in ques_ids:
    qa = vqa.loadQA(ques_id)[0]
    qqa = vqa.loadQQA(ques_id)[0]

    ques = qqa['question'][:-1]
    [q2i[x] for x in ques.lower().strip().split(" ")]

    answers = qa['answers']
    for ans in answers:
        if not ans['answer_confidence'] == 'yes':
            continue
        ans = ans['answer'].lower()
        if ans not in a2i_count:
            a2i_count[ans] = 1
        else:
            a2i_count[ans] = a2i_count[ans] + 1

a_sort = sorted(a2i_count.items(), key=operator.itemgetter(1), reverse=True)