Example #1
0
import os
import time
import numpy as np
from extra.efficientnet import EfficientNet
from tinygrad.tensor import Tensor

if __name__ == "__main__":
    Tensor.default_gpu = os.getenv("GPU") is not None
    model = EfficientNet(int(os.getenv("NUM", "0")))

    BS = 16
    img = np.zeros((BS, 3, 224, 224), dtype=np.float32)

    for i in range(32):
        print("running batch %d" % i)

        st = time.time()
        out = model.forward(Tensor(img))
        et = time.time()
        print("forward %.2f s" % (et - st))

        Y = [0] * BS

        y = np.zeros((BS, 1000), np.float32)
        y[range(y.shape[0]), Y] = -1000.0
        y = Tensor(y)
        loss = out.logsoftmax().mul(y).mean()

        st = time.time()
        loss.backward()
        et = time.time()
Example #2
0
    X = db[b'data'].reshape((-1, 3, 32, 32))
    Y = np.array(db[b'labels'])
    return X, Y


if __name__ == "__main__":
    X_train, Y_train = load_cifar()
    classes = 10

    Tensor.default_gpu = os.getenv("GPU") is not None
    TINY = os.getenv("TINY") is not None
    TRANSFER = os.getenv("TRANSFER") is not None
    if TINY:
        model = TinyConvNet(classes)
    elif TRANSFER:
        model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=True)
        model.load_weights_from_torch()
    else:
        model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=False)

    parameters = get_parameters(model)
    print("parameters", len(parameters))
    optimizer = optim.Adam(parameters, lr=0.001)

    #BS, steps = 16, 32
    BS, steps = 64 if TINY else 16, 2048

    for i in (t := trange(steps)):
        samp = np.random.randint(0, X_train.shape[0], size=(BS))

        img = X_train[samp].astype(np.float32)
Example #3
0
        out = model.forward(Tensor(img).gpu()).cpu()
    else:
        out = model.forward(Tensor(img))

    # if you want to look at the outputs
    """
  import matplotlib.pyplot as plt
  plt.plot(out.data[0])
  plt.show()
  """
    return out, retimg


if __name__ == "__main__":
    # instantiate my net
    model = EfficientNet(int(os.getenv("NUM", "0")))
    model.load_weights_from_torch()
    if GPU:
        [x.gpu_() for x in get_parameters(model)]

    # category labels
    import ast
    lbls = fetch(
        "https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt"
    )
    lbls = ast.literal_eval(lbls.decode('utf-8'))

    # load image and preprocess
    from PIL import Image
    url = sys.argv[1]
    if url == 'webcam':
import os
import time
import numpy as np
from extra.efficientnet import EfficientNet
from tinygrad.tensor import Tensor

if __name__ == "__main__":
    Tensor.default_gpu = os.getenv("GPU") is not None
    model = EfficientNet()

    BS = 4

    img = np.zeros((BS, 3, 224, 224), dtype=np.float32)

    st = time.time()
    out = model.forward(Tensor(img))
    et = time.time()
    print("forward %.2f s" % (et - st))

    Y = [0] * BS

    y = np.zeros((BS, 1000), np.float32)
    y[range(y.shape[0]), Y] = -1000.0
    y = Tensor(y)
    loss = out.logsoftmax().mul(y).mean()

    st = time.time()
    loss.backward()
    et = time.time()
    print("backward %.2f s" % (et - st))