Example #1
0
def index1():
    #print request.json
    imgURL = request.json["photourl"]
    print("URL : " + imgURL)
    p = FaceDetect(imgURL)
    a = p.detect()
    return jsonify({'id': a}), 201
Example #2
0
 def __init__(self):
     self.face_detector = FaceDetect()
     self.face_recognizer = cv2.face.LBPHFaceRecognizer_create()
     # TODO choose a recognizer
     # or use EigenFaceRecognizer by replacing above line with
     # face_recognizer = cv2.face.EigenFaceRecognizer_create()
     # or use FisherFaceRecognizer by replacing above line with
     # face_recognizer = cv2.face.FisherFaceRecognizer_create()
     self.faces = []
     self.labels = []
     self.label_dict = {}
     self.avg_face_dim = ()
Example #3
0
def main():
    if not os.path.isdir(training_set):
        print("Cropping faces and making train and test sets")
        face = FaceDetect()
        face.face_return()
        train_test_split.split()

    print("Training....")
    train_set = Eigen(training_set)
    train_image_label = train_set.label_extract()
    train_stacked_images, mean_face = train_set.image_processing()
    _, eig_face = train_set.eigen_value()

    # selecting no of eigen faces, the first values are the largest ones no need to sort them
    eig_face = eig_face[:, :no_of_eigfaces]
    train_weights, recons_train = train_set.weights_calculation(
        eig_face, mean_face)

    # display selected eigen faces
    # train_set.display_data(eig_face, 'Selected Eigen faces')
    #
    # # display original images
    # train_set.display_data(train_stacked_images, 'Original faces')
    #
    # # display reconstructed training face
    # train_set.display_data(recons_train, 'reconstructed training data')

    print("Training finished, testing ......")

    test_set = Eigen(testing_set)
    test_image_label = test_set.label_extract()
    print('Original label:', test_image_label)
    test_stacked_images, _ = test_set.image_processing(mean_face)
    test_weights, recons_test = test_set.weights_calculation(
        eig_face, mean_face)

    # display original test face
    test_set.display_data(test_stacked_images, 'original testfaces')

    # display reconstructed test face
    test_set.display_data(recons_test, 'reconstructed test data')
    test = Test(train_stacked_images, train_weights, test_weights)
    predicted_label = test.match_index(train_image_label)
    print('Predicted label:', predicted_label)
    match_check = [
        1 if tl == pl else 0
        for tl, pl in zip(test_image_label, predicted_label)
    ]
    print(match_check)
    print("Accuracy:", sum(match_check) / len(predicted_label))
Example #4
0
from face_detect import FaceDetect

x = FaceDetect()
x.run()
    def capture_and_mark(self):
        sl = StudentsList(self.class_name)
        students, roll_numbers = sl.load_pkl_file()

        FaceDetectObj = FaceDetect(self.class_name)

        Yes = True
        No = False
        Cancel = None

        i = 0
        while i <= 2:
            captured_image = None
            frame = None

            students_present = []
            while len(students_present) == 0:
                captured_image, frame = capture()
                students_present = FaceDetectObj.recognize(captured_image, roll_numbers)
                if students_present == "No Training Data":
                    return

            try:
                name_student_present = students[roll_numbers.index(students_present[0])]
            except:
                messagebox.showerror(
                    "Error",
                    "Recognized student not in database\nUnable to mark attendance",
                )
                return

            response = messagebox.askyesnocancel(
                "Confirm your identity",
                students_present[0] + "\n" + name_student_present,
            )

            if response is Yes:
                wb = excel.attendance_workbook(self.class_name)
                excel.mark_present(wb, students_present, self.class_name)
                img_path = os.path.join(
                    os.getcwd(),
                    "images",
                    self.class_name,
                    "s" + students_present[0][-2:],
                    os.path.basename(captured_image),
                )
                cv2.imwrite(img_path, frame)
                os.remove(captured_image)
                messagebox.showinfo(
                    "Attendance Confirmation", "Your attendance is marked!"
                )
                break
            elif response is Cancel:
                break
            elif response is No:
                if i == 2:
                    img_path = os.path.join(
                        os.getcwd(),
                        "images",
                        self.class_name,
                        "unrecognized students",
                        os.path.basename(captured_image),
                    )
                    cv2.imwrite(img_path, frame)
                    messagebox.showinfo(
                        "Unrecognized Student",
                        "You were not recognized as any student of this class.\nYour attendance will be marked later if you really are",
                    )
                    cv2.imwrite(img_path, frame)
                os.remove(captured_image)

            i += 1
Example #6
0
def run(images_path="media/",
        filename="",
        num_of_results=1,
        hm_lvl=0,
        certainty=0,
        data_dir=DATA_DIR):
    """execute face detection than vgg face and finally grad-cam

    :param filename: query image filename (default = "")
    :param images_path: query and output image path (default = "media/")
    :param data_dir: openCV directory path (default = DATA_DIR)
    :return TODO
    """

    res = Results(certainty)

    file_path = os.path.join(images_path, filename)
    if not file_path:
        res.err_msg = "ERROR: cannot load input image {}".format(filename)
        res.err_code = 1
        message(res.err_msg)
        return res

    face = FaceDetect(data_dir, file_path)
    if not face.is_valid:
        res.err_msg = "ERROR: cannot load input image {}".format(filename)
        res.err_code = 1
        message(res.err_msg)
        return res

    face.load_cascades()
    if not face.is_loaded:
        res.err_msg = "ERROR: cannot load cascades from: {}".format(data_dir)
        res.err_code = 2
        message(res.err_msg)
        return res

    face.detect_face()
    if not face.has_face:
        res.err_msg = "ERROR: sorry, frontal face wasn't detected"
        res.err_code = 3
        message(res.err_msg)
        return res

    # Crop faces from query image
    im = cv2.imread(file_path)
    # If found more than one face, pick the biggest one (w * h)
    cropped_im = crop_rect(im, max(face.features, key=lambda f: f[2] * f[3]))
    cv2.imwrite(os.path.join(images_path, "cropped.jpg"), cropped_im)

    # Run forward pass and GradCam on cropped image
    pred_labels, err_msg = classifier_gcam.predict(images_path, num_of_results)
    if (pred_labels is None) or (len(pred_labels) == 0):
        res.err_msg = err_msg
        res.err_code = 4
        message(res.err_msg)
        return res

    # Get predicted label from Torch output
    pred_ids = get_prediction_from_names(pred_labels)
    if len(pred_labels) == 0:
        res.err_msg = "ERROR: could not load names.txt file"
        res.err_code = 5
        message(res.err_msg)
        return res

    res.set_results(cropped_im, pred_ids[0], pred_labels[0], pred_ids[1:],
                    hm_lvl)
    res.find_significant_features()

    return res
Example #7
0
class FaceRecognition():
    def __init__(self):
        self.face_detector = FaceDetect()
        self.face_recognizer = cv2.face.LBPHFaceRecognizer_create()
        # TODO choose a recognizer
        # or use EigenFaceRecognizer by replacing above line with
        # face_recognizer = cv2.face.EigenFaceRecognizer_create()
        # or use FisherFaceRecognizer by replacing above line with
        # face_recognizer = cv2.face.FisherFaceRecognizer_create()
        self.faces = []
        self.labels = []
        self.label_dict = {}
        self.avg_face_dim = ()

    def load_training_data(self, path):
        if os.path.isdir(path):
            n_trainees = 1
            for training_dir in os.listdir(path):
                label = os.path.basename(training_dir)
                self.label_dict[n_trainees] = label
                # TODO parallize this for speed up later
                for f in os.listdir(path+'/'+training_dir):
                    # build correct path
                    img_path = '/'.join([path,training_dir,f])
                    # detect face; assume only 1 face and it the 1st one
                    bbox, face = self.face_detector.in_file(img_path)
                    # append respective list
                    self.faces.append(face[0])
                    self.labels.append(n_trainees)
                n_trainees += 1

    def uniform_faces(self):
        # collect dimensions of all faces
        face_dims = [f.shape for f in self.faces]
        # get average value
        self.avg_face_dim = tuple(np.mean(face_dims, axis=0).astype(int))
        # resize all to be the same size
        self.faces = [cv2.resize(face, self.avg_face_dim) for face in self.faces]

    def train(self, path):
        # load training data if none
        if not self.faces and not self.labels:
            self.load_training_data(path)
            self.uniform_faces()

        # train
        if self.faces and self.labels and len(self.faces) == len(self.labels):
            self.face_recognizer.train(self.faces, np.array(self.labels))

    def predict_face(self, face_img):
        img_copy = face_img.copy()
        if len(img_copy.shape) == 3:
            img_copy = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
        label, confidence = self.face_recognizer.predict(img_copy)
        return label, confidence

    def predict_img(self, img):
        # find face(s) in image
        bbox, faces = self.face_detector.in_frame(img)
        # make face same size as training data
        if self.avg_face_dim:
            faces[0] = cv2.resize(faces[0], self.avg_face_dim)
        # predict
        label, confidence = self.predict_face(faces[0])
        return label, confidence

    def predict_file(self, fname):
        img = cv2.imread(fname)
        label, confidence = self.predict_img(img)
        return label, confidence