Example #1
0
class FaceBlocking:
    def __init__(self, detection_type, recognition_type, video_source=0):
        self.COVER_COLOR = (0, 0, 0)
        self.MIN_CONF = 40

        self.detector = FaceDetector(detection_type)
        self.face_recognizer = FaceRecognizer(recognition_type)
        self.embedding_model = load_model(
            os.path.join(MODELS_DIR, "facenet_keras.h5"))
        self.labels = self.face_recognizer.labels

        self.capture = cv2.VideoCapture(video_source)
        if not self.capture.isOpened():
            raise ValueError("Unable to open video source", video_source)

        self.width = self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)
        self.height = self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)

    def __del__(self):
        if self.capture.isOpened():
            self.capture.release()

    def get_processed_frame(self, _block_list=[], _debug=False):
        val, frame = self.capture.read()

        faces = self.detector.get_coordinates(frame, _multi_face=True)
        faces = faces if faces is not None else []
        for i in range(len(faces)):
            start_x, start_y, end_x, end_y = faces[i]
            roi_color = frame[start_y:end_y, start_x:end_x]
            who_face, conf = self.face_recognizer.face_classification(
                roi_color, self.embedding_model)
            if conf >= self.MIN_CONF and who_face in _block_list:
                self.block_face(frame, who_face, start_x, start_y, end_x,
                                end_y)
            if _debug:
                self.draw_debug(frame, who_face, start_x, start_y, end_x,
                                end_y)

        return frame

    def draw_debug(self, _frame, _name, _start_x, _start_y, _end_x, _end_y):
        font = cv2.FONT_HERSHEY_SIMPLEX
        color = (255, 255, 255)
        stroke = 2
        cv2.putText(_frame, _name, (_start_x, _start_y), font, 1, color,
                    stroke, cv2.LINE_AA)
        cv2.rectangle(_frame, (_start_x, _start_y), (_end_x, _end_y), color,
                      stroke)

    def block_face(self, _frame, _name, _start_x, _start_y, _end_x, _end_y):
        cv2.rectangle(_frame, (_start_x, _start_y), (_end_x, _end_y),
                      self.COVER_COLOR, -1)
Example #2
0
class FaceBlocking:
    def __init__(self, video_source=0):
        self.COVER_COLOR = (0, 0, 0)

        self.detector = FaceDetector()
        self.age_estimator = AgeEstimator()

        self.capture = cv2.VideoCapture(video_source)
        if not self.capture.isOpened():
            raise ValueError("Unable to open video source", video_source)

        self.width = self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)
        self.height = self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)

    def __del__(self):
        if self.capture.isOpened():
            self.capture.release()

    def get_processed_frame(self, _age_restrictions=(), _debug=False):
        val, frame = self.capture.read()

        faces = self.detector.get_coordinates(frame, _multi_face=True)
        faces = faces if faces is not None else []
        for i in range(len(faces)):
            start_x, start_y, end_x, end_y = faces[i]
            roi_color = frame[start_y:end_y, start_x:end_x]
            pred_gender, pred_age = self.age_estimator.estimate(roi_color)
            estimated_age = np.argmax(pred_age)
            if not _age_restrictions[0] <= estimated_age <= _age_restrictions[1]:
                self.block_face(frame, start_x, start_y, end_x, end_y)
            if _debug:
                self.draw_debug(frame, estimated_age, start_x, start_y, end_x, end_y)

        return frame

    def draw_debug(self, _frame, _age, _start_x, _start_y, _end_x, _end_y):
        font = cv2.FONT_HERSHEY_SIMPLEX
        color = (0, 255, 0)
        stroke = 2
        cv2.putText(_frame, "Age: " + str(_age), (_start_x, _start_y), font, 1, color, stroke, cv2.LINE_AA)
        cv2.rectangle(_frame, (_start_x, _start_y), (_end_x, _end_y), color, stroke)

    def block_face(self, _frame, _start_x, _start_y, _end_x, _end_y):
        cv2.rectangle(_frame, (_start_x, _start_y), (_end_x, _end_y), self.COVER_COLOR, -1)

    def set_detection_type(self, detection_type):
        self.detector.set_detection_type(detection_type)

    def set_age_estimation_model(self, estimation_model):
        self.age_estimator.switch_model(estimation_model)
Example #3
0
    num = 1
    while True:
        if dir_name is None:
            print('You must pass your name as argument!')
            subprocess.run(["python", "took_pictures.py", "-h"])
            break

        img_dir = f'images/{dir_name}/'
        os.makedirs(img_dir, exist_ok=True)
        detector = FaceDetector(detection_type)
        # Capture frame-by-frame
        val, frame = capture.read()
        gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        try:
            start_x, start_y, end_x, end_y = detector.get_coordinates(frame)[0]
            roi_ = frame[start_y:end_y, start_x:end_x]
            cv2.rectangle(frame, (start_x, start_y), (end_x, end_y),
                          (255, 255, 255), 2)
            if only_face:
                cv2.imwrite(f'{img_dir}/{num}.png', roi_)
            else:
                cv2.imwrite(f'{img_dir}/{num}.png', frame)
            print(f'face no. {num}')
            num += 1

        except TypeError:
            pass

        # Display the resulting frame
        cv2.imshow('video', frame)