Example #1
0
    def features(self, images):
        images_np_array = [image_as_array(image) for image in images]
        image_height, image_width = images_np_array[
            0].shape[:
                     2]  # All images need to be same size, otherwise dont use batch
        batch_face_locations = face_recognition.batch_face_locations(
            images_np_array,
            batch_size=len(images),
            number_of_times_to_upsample=1)

        detections = []
        for face_locations, image in zip(batch_face_locations,
                                         images_np_array):
            if not face_locations:
                detections.append([])
                continue

            crops = self.create_crops(width=image_width,
                                      height=image_height,
                                      face_locations=face_locations)
            face_features = self.face_features(image=image,
                                               face_locations=face_locations)

            detections.append([
                FaceDetection(crop=crop, encoding=features)
                for crop, features in zip(crops, face_features)
            ])

        return detections
def print_matches_vid(act_frames,
                      img_in_frames,
                      output,
                      frame_count,
                      known_face_encodings,
                      known_face_name,
                      in_tolerance=float(0.6),
                      upsample=0):
    x = in_tolerance
    batch_of_face_locations = face_recognition.batch_face_locations(
        img_in_frames, batch_size=2, number_of_times_to_upsample=upsample)

    for frame_number_in_batch, face_locations in enumerate(
            batch_of_face_locations):

        number_of_faces_in_frame = len(face_locations)
        frame_number = frame_count - 2 + frame_number_in_batch
        print("Found {} face(s) in frame #{}.".format(number_of_faces_in_frame,
                                                      frame_number))
        pil_image = Image.fromarray(act_frames[frame_number_in_batch])

        face_encodings = face_recognition.face_encodings(
            img_in_frames[frame_number_in_batch],
            known_face_locations=face_locations)
        face_names = []

        for face_encoding in face_encodings:

            matches = face_recognition.compare_faces(known_face_encodings,
                                                     face_encoding,
                                                     tolerance=x)

            name = "Unknown"

            face_distances = face_recognition.face_distance(
                known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)

            if matches[best_match_index]:
                im = known_face_encodings[best_match_index]
                name = known_face_name[str(im)]
            face_names.append(name)

        for (top, right, bottom, left), name in zip(face_locations,
                                                    face_names):
            cv2.rectangle(act_frames[frame_number_in_batch], (left, top),
                          (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(act_frames[frame_number_in_batch],
                          (left, bottom - 25), (right, bottom), (0, 0, 255),
                          cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(act_frames[frame_number_in_batch], name,
                        (left + 6, bottom - 6), font, 0.5, (255, 255, 255), 1)

        print("Writing frame {}".format(frame_number))
        output.write(act_frames[frame_number_in_batch])
Example #3
0
 def __get_location_frames(self):
     '''Get the total faces detected and f.indexed locations/original/process based on hits.'''
     batch = fr.batch_face_locations(self.__process_frames, 1,
                                     self.__ps.batch_size)
     hits = np.nonzero(batch)[0]
     locations = np.asarray(batch)[hits]
     return (sum(len(x) for x in locations),
             zip(locations,
                 np.asarray(self.__original_frames)[hits],
                 np.asarray(self.__process_frames)[hits]))
Example #4
0
def process_video(vid):
    print(f"Processing: {vid}")
    basename, _ = os.path.splitext(os.path.basename(vid))
    os.makedirs(f"{basename}_faces", exist_ok=True)
    if os.path.exists(f"{basename}.maga"):
        return
    video_capture = cv2.VideoCapture(vid)
    faces = 0
    frames = []
    while video_capture.isOpened():
        # Grab a single frame of video
        ret, frame_cv = video_capture.read()

        # Bail out when the video file ends
        if not ret:
            break

        frame = cv2.cvtColor(frame_cv, cv2.COLOR_BGR2RGB)
        frames.append(frame)
        print(".", end="", flush=""),
        # Tune this to GPU Memory Size.
        if len(frames) == BATCH_FRAMES:
            print("#", end="", flush="")
            batch_of_face_locations = face_recognition.batch_face_locations(
                frames, number_of_times_to_upsample=0)

            for idx, face_locations in enumerate(batch_of_face_locations):
                if len(face_locations) == 0:
                    continue
                face_encodings = face_recognition.face_encodings(
                    face_image=frames[idx],
                    known_face_locations=face_locations)
                for face_encoding, face_location in zip(
                        face_encodings, face_locations):
                    print("$", end="", flush=True)
                    top, right, bottom, left = face_location
                    # You can access the actual face itself like this:
                    face_image = frame[top:bottom, left:right]
                    pil_image = Image.fromarray(face_image)

                    pil_image.save(
                        f"{basename}_faces/{basename}-{faces:08d}.jpg")

                    with open(f"{basename}_faces/{basename}-{faces:08d}.np",
                              "wb") as b:
                        np.save(b,
                                face_encoding,
                                allow_pickle=False,
                                fix_imports=False)

                    faces += 1
            print("", end="\n", flush=True)
            frames = []
    with open(f"{basename}.maga", "w") as F:
        F.write("MAGA!")
    def face_recognition(self,
                         image_list,
                         using_cuda=True,
                         batch_size=16,
                         model="cnn"):
        '''
        :param image_list: 待处理的图像列表。
        :param using_cuda: 是否使用GPU加速,如果使用GPU,则推荐使用batch cnn模型
        :param batch_size: 一个batch的大小
        :param model: cnn/hog,hog模型在cpu的环境下运行较快
        :return:
        '''
        location_list = []
        print("Start Face Detection")
        if using_cuda and model == "cnn":
            for i in tqdm(range(0, len(image_list), batch_size)):
                batch_location = face_recognition.batch_face_locations(
                    image_list[i:i + batch_size],
                    number_of_times_to_upsample=0,
                    batch_size=batch_size)
                location_list = location_list + batch_location
        else:
            for i in tqdm(range(len(image_list))):
                image = image_list[i]
                location = face_recognition.face_locations(image, model=model)
                location_list.append(location)

        #  face_image, loc = self.face_extract(image, loc)
        assert len(image_list) == len(location_list)

        speaking_label_list = []
        for i in range(len(location_list)):
            image, locations = image_list[i], location_list[i]
            speaking_label = []
            for loc in locations:
                face_image, dlib_loc = self.face_extract(image, loc)
                check_result = self.face_check(image, dlib_loc)
                if not check_result["flag"]:
                    self.face_save(check_result["embedding"], face_image,
                                   check_result["index"])
                abs_label, rel_label = self.speaking_label(
                    check_result["shape"])
                speaking_label.append({
                    "index": check_result["index"],
                    "abs_label": abs_label,
                    "rel_label": rel_label
                })
            speaking_label_list.append(speaking_label)

        return speaking_label_list
Example #6
0
def detectSpeakerFace(frame_paths, speaker_enc):
    n = len(frame_paths)
    frame_batch = []
    speaker_bb = {}

    for frame_counter in range(n):
        frame = fr.load_image_file(frame_paths[frame_counter])
        frame_batch.append(frame)

        if frame_counter != n - 1 and len(frame_batch) != BATCH_SIZE:
            continue

        loc_batch = fr.batch_face_locations(
            frame_batch, number_of_times_to_upsample=UPSAMPLE)

        for frame_number_in_batch, curr_locations in enumerate(loc_batch):
            curr_frame_number = frame_counter + 1 - len(
                frame_batch) + frame_number_in_batch
            curr_frame_path = frame_paths[curr_frame_number]
            curr_frame = frame_batch[frame_number_in_batch]

            m = ('%-20s %-6d %-3d' %
                 (curr_frame_path, curr_frame_number, len(curr_locations)))
            print(FORMAT % ('detect_frame', m))

            if len(curr_locations) == 0:
                continue

            curr_encodings = fr.face_encodings(
                curr_frame, known_face_locations=curr_locations)
            res = fr.compare_faces(curr_encodings, speaker_enc)
            # TODO: find the res[k] == True such that distance to speaker is minimized

            for k in range(len(curr_encodings)):
                enc = curr_encodings[k]
                loc = curr_locations[k]
                curr_frame_name = '/'.join(curr_frame_path.split('/')[-2:])

                if res[k] == True:
                    top, right, bottom, left = curr_locations[k]
                    speaker_bb[curr_frame_name] = {}
                    speaker_bb[curr_frame_name]['top'] = top
                    speaker_bb[curr_frame_name]['right'] = right
                    speaker_bb[curr_frame_name]['bottom'] = bottom
                    speaker_bb[curr_frame_name]['left'] = left

        frame_batch = []

    return speaker_bb
    def batch_face_locations(images: List[numpy.ndarray], batch_size=128):
        """Finds all face locations in a list of images through batch processing

        Args:
            images (List[numpy.ndarray]): List of images

        Returns:
            List[tuple]: Face boxes (top, right, bottom, left) 
        """
        if batch_size < 1:
            raise ValueError
        face_locations = fr.batch_face_locations(images,
                                                 number_of_times_to_upsample=0,
                                                 batch_size=batch_size)
        assert len(face_locations) == len(images)
        return face_locations
Example #8
0
def getFrameInfo(frame_paths, speaker_enc):
    n = len(frame_paths)
    frame_batch = []
    frame_info = {}

    for frame_counter in range(n):
        frame = fr.load_image_file(frame_paths[frame_counter])
        frame_batch.append(frame)

        if frame_counter != n - 1 and len(frame_batch) != BATCH_SIZE:
            continue

        loc_batch = fr.batch_face_locations(
            frame_batch, number_of_times_to_upsample=UPSAMPLE)

        for frame_number_in_batch, curr_locations in enumerate(loc_batch):
            curr_frame_number = frame_counter + 1 - len(
                frame_batch) + frame_number_in_batch
            curr_frame_path = frame_paths[curr_frame_number]
            curr_frame = frame_batch[frame_number_in_batch]

            print("%-20s %-6d %-3d" %
                  (curr_frame_path, curr_frame_number, len(curr_locations)))

            if len(curr_locations) == 0:
                continue

            curr_encodings = fr.face_encodings(
                curr_frame, known_face_locations=curr_locations)
            res = fr.compare_faces(curr_encodings, speaker_enc)

            for k in range(len(curr_encodings)):
                enc = curr_encodings[k]
                loc = curr_locations[k]
                curr_frame_name = '/'.join(curr_frame_path.split('/')[-2:])
                frame_info[curr_frame_name] = {}

                if res[k] == True:
                    top, right, bottom, left = curr_locations[k]
                    frame_info[curr_frame_name]['top'] = top
                    frame_info[curr_frame_name]['right'] = right
                    frame_info[curr_frame_name]['bottom'] = bottom
                    frame_info[curr_frame_name]['left'] = left

        frame_batch = []

    return frame_info
Example #9
0
def get_face_locations(frames, GPU=False, batch_size=64):
    face_coordinates = []
    if GPU:
        for i in range(0, len(frames), batch_size):
            batch_of_frames = frames[i:i+batch_size]
            batch_face_locations = face_recognition.batch_face_locations(batch_of_frames, number_of_times_to_upsample=0)
            face_coordinates += batch_face_locations
        face_coordinates = [f[-1] if f is not None and len(f) else None for f in face_coordinates]
    else:
        for frame in tqdm(frames):
            coordinates_found = face_recognition.face_locations(frame)
            if coordinates_found is not None and len(coordinates_found):
                face_coordinates.append(coordinates_found[-1])
            else:
                face_coordinates.append(None)
        
    return face_coordinates
Example #10
0
def crop_face_batch(imgs, batch_size):
    data_len = imgs.shape[0]
    hasFace = np.ones((data_len), dtype=bool)
    faces = np.ndarray((data_len, 3, 224, 224), dtype=np.float32)

    imgs = numpy_convert_to_list(imgs)

    batch_locs = fr.batch_face_locations(imgs, batch_size=batch_size)

    for idx, locations in enumerate(batch_locs):
        if len(locations) == 0:
            hasFace[idx] = False
            continue
        flags = locations[max_area_indx(locations)]
        cropped = cv.resize(imgs[idx][flags[0]:flags[2], flags[3]:flags[1]],
                            (224, 224)).astype(np.float32)
        faces[idx] = np.transpose(cropped, (2, 0, 1))

    return faces, hasFace
    def processBatch(self, raw_frames, rgb_frames, frame_count, outdir):
        target_found = False
        batch_of_face_locations = face_recognition.batch_face_locations(
            rgb_frames, number_of_times_to_upsample=0)

        for frame_number_in_batch, face_locations in enumerate(
                batch_of_face_locations):

            frame_number = frame_count - len(
                rgb_frames) + frame_number_in_batch

            raw_frame = raw_frames[frame_number_in_batch]
            rgb_frame = rgb_frames[frame_number_in_batch]

            outfile = os.path.join(outdir,
                                   "frame_{0}.jpg".format(frame_number))
            self.processImage(raw_frame, rgb_frame, outfile)

        return target_found
Example #12
0
def batch_job(frames, images, positions, face_counts, batch_size):
    batch_of_face_locations = face_recognition.batch_face_locations(
        frames, number_of_times_to_upsample=0, batch_size=batch_size)

    for frame, faces in zip(frames, batch_of_face_locations):
        position = []
        for (top, right, bottom, left) in faces:
            img_face = frame[top:bottom, left:right]
            img_yuv = cv2.cvtColor(img_face, cv2.COLOR_BGR2YUV)
            # equalize the histogram of the Y channel
            img_yuv[:, :, 0] = cv2.equalizeHist(img_yuv[:, :, 0])
            # convert the YUV image back to RGB format
            img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
            img_output2 = cv2.resize(img_output, (299, 299),
                                     interpolation=cv2.INTER_AREA)
            images.append(img_output2)  # faces
            position.append((top, right, bottom, left))
        face_counts.append(len(faces))
        positions.append(position)
Example #13
0
def load_face_data():
    # 已知人脸库 Start
    # 加载一个示例图片并学习如何识别它。
    yzc_image = face_recognition.batch_face_locations("/know_face_img/YZC.jpg")
    yzc_face_encoding = face_recognition.face_encodings(yzc_image)[0]

    # 加载一个示例图片并学习如何识别它。

    jack_image = face_recognition.load_image_file("/know_face_img/jack.jpg")
    jack_face_encoding = face_recognition.face_encodings(jack_image)[0]

    # 加载一个示例图片并学习如何识别它。
    wuyj_image = face_recognition.load_image_file(
        "/know_face_img/WuYongjun.jpg")
    wuyj_face_encoding = face_recognition.face_encodings(wuyj_image)[0]

    # 创建已知人脸编码及其名称的数组
    known_face_encodings = [
        yzc_face_encoding, jack_face_encoding, wuyj_face_encoding
    ]
    known_face_names = ["Youzhengcai", "Jack Ma", "WuYongjun"]
def run():
    assert os.path.exists("data")

    batch_size = 64

    with open("data/celeba_cropped/list_eval_partition_filtered.txt", "r") as f:
        lines = f.readlines()
        fnames = list([l.split()[0] for l in lines])

    print("Generating embeddings...")

    embeddings = []
    for i in range(0, len(fnames), batch_size):
        print(i)
        imax = min(i + batch_size, len(fnames))
        fname_batch = fnames[i:imax]
        images = list(
            [face_recognition.load_image_file("data/celeba/img_align_celeba/%s" % fname) for fname in fname_batch]
        )
        locations = face_recognition.batch_face_locations(images, batch_size=batch_size)

        batch_embeddings = []
        for j in range(len(fname_batch)):
            img = images[j]
            loc = locations[j]
            embedding_list = face_recognition.face_encodings(img, loc)
            if len(embedding_list) == 0:
                # Fill with nans
                embedding = np.full((128,), np.nan)
            else:
                embedding = embedding_list[0]
            batch_embeddings.append(embedding)
        embeddings.append(np.stack(batch_embeddings, axis=0))

    embeddings = np.concatenate(embeddings, axis=0)
    np.save("data/celeba_cropped/embeddings.npy", embeddings)
    with open("data/celeba_cropped/embedding_file_order.txt", "w") as f:
        f.write("\n".join(fnames))
Example #15
0
 def faces_location_vedio(self, vedio_path):
     """每帧一个图片,待调"""
     import cv2
     video_capture = cv2.VideoCapture(vedio_path)
     frames = []
     frame_count = 0
     while video_capture.isOpened():
         # Grab a single frame of video
         ret, frame = video_capture.read()
         # Bail out when the video file ends
         if not ret:
             break
         # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
         frame = frame[:, :, ::-1]
         # Save each frame of the video to a list
         frame_count += 1
         frames.append(frame)
         print(frames)
         # Every 128 frames (the default batch size), batch process the list of frames to find faces
         if len(frames) == 128:
             batch_of_face_locations = face_recognition.batch_face_locations(
                 frames, number_of_times_to_upsample=0)
             # Now let's list all the faces we found in all 128 frames
             for frame_number_in_batch, face_locations in enumerate(
                     batch_of_face_locations):
                 number_of_faces_in_frame = len(face_locations)
                 frame_number = frame_count - 128 + frame_number_in_batch
                 logger.info("I found {} face(s) in frame #{}.".format(
                     number_of_faces_in_frame, frame_number))
                 for face_location in face_locations:
                     # Print the location of each face in this frame
                     top, right, bottom, left = face_location
                     logger.info(
                         " - A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}"
                         .format(top, left, bottom, right))
             # Clear the frames array to start the next batch
             frames = []
Example #16
0
def extractFaces(frame_paths):
    n = len(frame_paths)
    face_encodings = []
    enc_to_loc = []
    frame_batch = []

    for frame_counter in range(n):
        frame = fr.load_image_file(frame_paths[frame_counter])
        frame_batch.append(frame)

        if frame_counter != n - 1 and len(frame_batch) != BATCH_SIZE:
            continue

        loc_batch = fr.batch_face_locations(frame_batch, number_of_times_to_upsample=UPSAMPLE)

        for frame_number_in_batch, curr_locations in enumerate(loc_batch):
            curr_frame_number = frame_counter + 1 - len(frame_batch) + frame_number_in_batch
            curr_frame_path = frame_paths[curr_frame_number]
            curr_frame = frame_batch[frame_number_in_batch]

            m = ('%-20s %-6d %-3d' % (curr_frame_path, curr_frame_number, len(curr_locations)))
            print(FORMAT % ('proc_frame', m))

            if len(curr_locations) == 0:
                continue

            curr_encodings = fr.face_encodings(curr_frame, known_face_locations=curr_locations)

            for k in range(len(curr_encodings)):
                enc = curr_encodings[k]
                loc = curr_locations[k]
                enc_to_loc.append({'frame': curr_frame_number, 'loc': loc})
                face_encodings.append(enc)

        frame_batch = []

    return (face_encodings, enc_to_loc)
Example #17
0
def calc_bbox(image_list, batch_size=5):
    """Batch infer of face location, batch_size should be factor of total frame number."""
    top_sum = right_sum = bottom_sum = left_sum = 0

    for i in tqdm(range(len(image_list) // batch_size)):
        image_batch = []

        for j in range(i * batch_size, (i + 1) * batch_size):
            image = face_recognition.load_image_file(image_list[j])
            image_batch.append(image)

        face_locations = face_recognition.batch_face_locations(
            image_batch, number_of_times_to_upsample=0, batch_size=batch_size)

        for face_location in face_locations:
            top, right, bottom, left = face_location[
                0]  # assuming only one face detected in the frame
            top_sum += top
            right_sum += right
            bottom_sum += bottom
            left_sum += left

    return (top_sum // len(image_list), right_sum // len(image_list),
            bottom_sum // len(image_list), left_sum // len(image_list))
img_files = glob("/home/ubuntu/big_data/*.jpg")
dir_name = "/home/ubuntu/face_cropped/"

for start_index in range(0, len(img_files), batch_size):
    # get a batch of image filenames from the directory
    img_batch = img_files[start_index:start_index + batch_size]
    # convert all those image files to numpy arrays
    images = {img: face_recognition.load_image_file(img) for img in img_batch}
    images = {
        fname: images[fname]
        for fname in images if images[fname].shape == (1920, 1080, 3)
    }
    fnames = list(images.keys())
    images = list(images.values())
    # use face_detection API to get face locations
    batch_of_face_locations = face_recognition.batch_face_locations(
        images, number_of_times_to_upsample=0, batch_size=len(images))

    for i in range(len(batch_of_face_locations)):
        face_location = batch_of_face_locations[i][0]
        # unpack bounding box coordinates of face_locations
        top, right, bottom, left = face_location
        # crop the image to only the face
        face_image = images[i][top:bottom, left:right]
        # generate new filename with original basename in new directory
        new_file_name = dir_name + os.path.basename(fnames[i])
        # save the image file to disk
        img = Image.fromarray(face_image, 'RGB')
        img.save(new_file_name)
    print("a completed batch at position: " + str(start_index))
while video_capture.isOpened():
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Bail out when the video file ends
    if not ret:
        break

    # Save each frame of the video to a list
    frame_count += 1
    frames.append(frame)

    # Every 128 frames (the default batch size), batch process the list of frames to find faces
    if len(frames) == 128:
        batch_of_face_locations = face_recognition.batch_face_locations(frames, number_of_times_to_upsample=0)

        # Now let's list all the faces we found in all 128 frames
        for frame_number_in_batch, face_locations in enumerate(batch_of_face_locations):
            number_of_faces_in_frame = len(face_locations)

            frame_number = frame_count - 128 + frame_number_in_batch
            print("I found {} face(s) in frame #{}.".format(number_of_faces_in_frame, frame_number))

            for face_location in face_locations:
                # Print the location of each face in this frame
                top, right, bottom, left = face_location
                print(" - A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))

        # Clear the frames array to start the next batch
        frames = []
Example #20
0
def face_dectect_knn(filename_video_input):
    label=0
    knn_clf =pickle.load(open(filename_knn_model,'rb'))
    knn_clf.n_jobs=16
    folder_temp=filename_video_input.split(".")[0]
    folder_temp =os.path.join(folder_output,folder_temp)
    if not os.path.exists(folder_temp):
        os.mkdir(folder_temp)
    file_video=os.path.join(folder_videos,filename_video_input)
    video = cv2.VideoCapture(file_video)
    frames_total=video.get(cv2.CAP_PROP_FRAME_COUNT)
    progress=tqdm([i for i in range(int(frames_total))],desc="正在识别视频帧",unit='帧')
    frame_count = 1
    success = True
    begin = time.time()
    total={}
    frames=[]
    while success:
        success, frame = video.read()
        if (frame_count % frames_every_capture == 0):
            capture=int(frame_count/frames_every_capture)
            progress.update(frames_every_capture)
            frame = cv2.resize(frame, (0, 0),fx=resize_scale, fy=resize_scale,interpolation=cv2.INTER_CUBIC)
            # 视频画面可以缩小一些,但是阈值也要调整
            frames.append(frame)
            if len(frames)>=frames_to_recofnize_once:
                batch_of_face_locations = face_recognition.batch_face_locations(frames, number_of_times_to_upsample=0)
                frame_index_zip=[]
                face_encodings_zip=[]
                face_locations_zip=[]
                for frame_index, face_locations in enumerate(batch_of_face_locations):
                    if len(face_locations)==0:
                        continue
                    face_encodings = face_recognition.face_encodings(frame, face_locations)
                    for i in range(len(face_encodings)):
                        frame_index_zip.append(frame_index)
                    face_encodings_zip+=face_encodings
                    face_locations_zip+=face_locations
                predicts = knn_clf.predict(face_encodings_zip)
                for frame_index,(bottom, right, top, left), result in zip(frame_index_zip,face_locations_zip, predicts):
                    if result == "ycy":
                        frame = frames[frame_index]
                        frame_number = capture - frames_to_recofnize_once + frame_index
                        face=[bottom,top,left,right]
                        image_cut = frame[bottom:top, left:right]
                        label += 1
                        filename_save = "recognition/true/{}-{}.jpg".format(label,frame_number)
                        cv2.imwrite(filename_save, image_cut)
                        toleranses = {
                            0.4: 10,
                        }
                        if frame_number in total:
                            if "faces" in total[frame_number]:
                                total[frame_number]["faces"].append(face)
                            else:
                                total[frame_number]["faces"]=[face]
                        else:
                            total[frame_number]["toleranse"] = toleranses
                    else:
                        frame = frames[frame_index]
                        frame_number = capture - frames_to_recofnize_once + frame_index
                        image_cut = frame[bottom:top, left:right]
                        label += 1
                        filename_save = "recognition/false/{}-{}.jpg".format(label,frame_number)
                        cv2.imwrite(filename_save, image_cut)
                frames = []
        frame_count = frame_count + 1
        cv2.waitKey(1)
    end = time.time()
    progress.close()
    print("识别视频帧共计用时{}秒".format(round(float(end - begin), 3)))
    with io.open(os.path.join(folder_temp,filename_static),"w",encoding="utf-8") as fd:
        text = json.dumps(total, ensure_ascii=False, indent=4)
        fd.write(text)
    video.release()