class Doorman: """Main Doorman App for the Raspberry Pi.""" def __init__(self): """Begin the app.""" web_dir = os.path.join(os.path.dirname(__file__), 'html') os.chdir(web_dir) print('CWD:', web_dir) self.totp = TOTP('supersecretkey32') # Key unique to each user. self.fr = FaceRecognition() self.fr.set_request_unlock(request_unlock) self.server = WebServer(port=8080, ws_port=8081) self.server.set_begin_registration(self.begin_registration) self.server.set_verify_code(self.verify_code) self.requestedUnlock = False print('Hello world!') self.fr.start_recognition() def request_unlock(self): """Send request to client to unlock the computer.""" self.server.request_unlock() self.requestedUnlock = True time.sleep(30) if self.requestedUnlock: self.request_lock() self.requestedUnlock = False def request_lock(self): """Send request to client to lock the computer.""" self.server.request_lock() def begin_registration(self): """Handler for web request to register new user.""" print('Registration beginning!') # TODO: Replace this with the registration process. def verify_code(self, code): """ Handler for web request to verify the given code. :param code: The code to verify from the user. :return: True if verified successfully, False if invalid. """ is_valid = self.totp.verify_totp(code) self.requestedUnlock = False if not is_valid: request_lock() return is_valid
def __init__(self): start = time.time() FaceRecognition.__init__(self) VedioBase.__init__(self) # self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) # self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) # track 5 faces in the sametime self.trackers = [dlib.correlation_tracker() for _ in range(7)] self.track_names = [] self.detectd_faces = [] print('init', time.time() - start)
class RunFaceID(object): def __init__(self): super(RunFaceID, self).__init__() self.face_detection = FaceDetection() self.face_recognition = FaceRecognition() def predict(self, array_embeddings, embeddings_source): return "unknown" def processing(self, images, embeddings_source): frame = copy.deepcopy(images) faces = self.face_detection.detect_faces(frame) if faces is None or len(faces) < 1: return None data = {} array_img = [] labels = [] for x, y, w, h in faces: if w > 0 and h > 0: img_crop = frame[y:y + h, x:x + w, :] array_img.append(img_crop) # labels.append("unknown") array_img = np.array(array_img) # data["labels"] = labels if count >= NUMBER_FRAME: array_embeddings = self.face_recognition.embedding_image(array_img) data["labels"] = self.predict_labels(array_embeddings, embeddings_source) data["bounding_boxs"] = faces return data
def __init__(self): """Begin the app.""" web_dir = os.path.join(os.path.dirname(__file__), 'html') os.chdir(web_dir) print('CWD:', web_dir) self.totp = TOTP('supersecretkey32') # Key unique to each user. self.fr = FaceRecognition() self.fr.set_request_unlock(request_unlock) self.server = WebServer(port=8080, ws_port=8081) self.server.set_begin_registration(self.begin_registration) self.server.set_verify_code(self.verify_code) self.requestedUnlock = False print('Hello world!') self.fr.start_recognition()
class RunFaceID(object): def __init__(self): super(RunFaceID, self).__init__() self.face_detection = FaceDetection() self.face_recognition = FaceRecognition() self.arr_embeddings = pickle.load(open("data_embeddings", "rb")) self.labels = pickle.load(open("labels", "rb")) def predict_labels(self, embeddings): dis_cs = cs(embeddings, self.arr_embeddings) index_list = np.argmax(dis_cs, axis=-1) label_pred = [] for i, index in enumerate(index_list): if dis_cs[i][index] > 0.6: label_pred.append(self.labels[index]) else: label_pred.append("unknown") return label_pred def processing(self, images, count): frame = copy.deepcopy(images) faces = self.face_detection.detect_faces(frame) if faces is None or len(faces) < 1: return None data = {} array_img = [] labels = [] for x, y, w, h in faces: if w > 0 and h > 0: img_crop = img_crop = frame[y:y + h, x:x + w, :] array_img.append(img_crop) labels.append("unknown") array_img = np.array(array_img) # data["labels"] = labels if count >= 5: array_embeddings = self.face_recognition.embedding_image(array_img) data["labels"] = self.predict_labels(array_embeddings) data["bounding_boxs"] = faces return data
def train_dataframe(company_name): print("Loading Started...") known_faces = get_images_with_tag(company_name) all_ids = [] all_locations = [] fr = FaceRecognition() try: for name, known_file in known_faces: all_ids.append(name) all_locations.append(known_file) print("Loaded: " + name) except: print("Error for " + known_file + " tag: " + name) df = pd.DataFrame(list(zip(all_ids, all_locations)), columns =['person', 'path']) print("Fitting started") fr.fit_from_dataframe(df) fr.save('/var/www/attendancekeeper_' + company_name + '/detector/knn.pkl') print("Fitting done")
import argparse #ap = argparse.ArgumentParser() #ap.add_argument("-m", "--mode", required=True, # help="mode of face recognition, 'cam'-->webcam or 'vid'-->stored video") #ap.add_argument("-d", "--directory", required=True, # help="path to root folder where person data is stored") #ap.add_argument("-v", "--input", # help="path to video input if mode is stored video") #ap.add_argument("-o", "--output", required=True, # help="name of output video") #ap.add_argument("-c", "--confidence", type=float, default=0.7, # help="confidence value for correct face recognition") #args = vars(ap.parse_args()) FR = FaceRecognition() def videoFR(path, personCount): count_frames = 0 skip_frames = 3 inputVideo = 'Friends.mp4' #args["input"] prob_th = 0.85 #args["confidence"] cap = cv2.VideoCapture(inputVideo) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) video = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) pbar = tqdm(total=total_frames, desc="[INFO] Processing video") while cap.isOpened():
def __init__(self): super(RunFaceID, self).__init__() self.face_detection = FaceDetection() self.face_recognition = FaceRecognition()
import os from face_recognition import FaceRecognition if __name__ == '__main__': model_name = "face_recognition.h5" image_path = 'test.jpg' face_recognition = FaceRecognition() face_recognition.training() face_recognition.save_model(model_name) model = FaceRecognition.load_saved_model(os.path.join("model", model_name)) k = FaceRecognition.model_prediction( image_path, os.path.join("model", model_name), os.path.join("model", "face_recognition_class_names.npy")) print(f"detected class is {k}")
class RunFaceID(object): def __init__(self): super(RunFaceID, self).__init__() self.face_detection = FaceDetection() self.face_recognition = FaceRecognition() # self.arr_embeddings = pickle.load(open("data_embeddings", "rb")) # self.labels = pickle.load(open("labels", "rb")) def predict_labels(self, embeddings, embeddings_source, labels_index, labels_name): dis_cs = cs(embeddings, embeddings_source) index_list = np.argmax(dis_cs, axis=-1) label_pred = [] for i, index in enumerate(index_list): if dis_cs[i][index] > 0.6: label_index = labels_index[index] for i, (index_tmp, name_tmp) in enumerate(labels_name): if label_index == index_tmp: label_pred.append(labels_name[i]) else: label_pred.append([-1, "unknown"]) return label_pred def processing(self, images, count, embeddings_source, labels_index, labels_name, message_status): frame = copy.deepcopy(images) faces = self.face_detection.detect_faces(frame) if faces is None or len(faces) < 1: return None data = {} array_img = [] labels = [] for x, y, w, h in faces: if w > 0 and h > 0: img_crop = frame[y:y + h, x:x + w, :] array_img.append(img_crop) # labels.append("unknown") array_img = np.array(array_img) # data["labels"] = labels if count >= NUMBER_FRAME: array_embeddings = self.face_recognition.embedding_image(array_img) data["labels"] = self.predict_labels(array_embeddings, embeddings_source, labels_index, labels_name) data["bounding_boxs"] = faces return data def get_faces(self, images): faces = self.face_detection.detect_faces(images) return list(faces) def get_bb_embeddings(self, images): faces = self.get_faces(images) if len(faces) != 1: return None array_img = [] data = {} for x, y, w, h in faces: if w > 0 and h > 0: img_crop = images[y:y + h, x:x + w, :] array_img.append(img_crop) embeddings = self.face_recognition.embedding_image(array_img)[0] data["bounding_box"] = json.dumps(faces[0].tolist()) data['embeddings'] = json.dumps(embeddings.tolist()) return data
def main(): fr = FaceRecognition() rospy.spin()
from face_recognition import FaceRecognition import base64 from io import BytesIO data = { 'data': '' } # with open("1.jpg", "rb") as image_file: # encoded_string = base64.b64encode(image_file.read()) # encoded_string = str(encoded_string, encoding='utf-8') # print(encoded_string) # # model = FaceRecognition() # model.predict(encoded_string) encoded_string = data.get('data') encoded_string = encoded_string.split(',')[1] model = FaceRecognition() model.predict(encoded_string)
#!/usr/bin/env python2 import numpy as np from face_recognition import FaceRecognition fr = FaceRecognition(load_model=False) fr.train_network()
from face_detection import FaceDetection from face_recognition import FaceRecognition from utils import read_image if __name__ == "__main__": # Init the Face Detection and Face Recognition classes detection = FaceDetection() recognition = FaceRecognition() # Read the image image = read_image('./yolov3/data/samples/person.jpg') # Detect a face in the image (if many, returns the biggest one; if none, returns None) bounding_box = detection.detect(image) # bounding_box is a dictionary with parameters: x1, y1, x2, y2, width, height print(bounding_box) if bounding_box is not None: # Plot the bounding box on the image detection.plot(image, bounding_box) # Extract the face from the image face = recognition.extract(image, bounding_box) # Check if the face is from an employee, return True or False is_employee = recognition.recognize(face) if is_employee: print('Opening Door')
def main(): # parsing arguments args = MyArgumentParser().get_arguments() neuralnetwork = FaceRecognition(epochs=args['epochs'], batch_size=args['batch'], image_width=args['image_width'], image_height=args['image_height']) neuralnetwork.create_img_generator() neuralnetwork.set_train_generator(train_dir=args['train']) neuralnetwork.set_valid_generator(valid_dir=args['valid']) # prepare the model if args['fine_tuning'][0]: neuralnetwork.set_face_recognition_model( pretrained_model=args['neuralnetwork'], weights='imagenet', trainable_parameters=args['fine_tuning'][0], num_trainable_parameters=args['fine_tuning'][1]) else: neuralnetwork.set_face_recognition_model( pretrained_model=args['neuralnetwork'], weights='imagenet') # name for plot name = args['namedata'] # train fit neuralnetwork.train_and_fit_model(name) # save model neuralnetwork.save_model_to_file(name=name, extension='.h5', export_image=False) # clear del neuralnetwork
from face_recognition import FaceRecognition from methods import FaceRecognitionMethod from view import View if __name__ == '__main__': view = View() face_recognition = FaceRecognition(view) face_recognition.run(FaceRecognitionMethod.DETECTOR ) # Remove method if want use haar cascade
def __init__(self): super(RunFaceID, self).__init__() self.face_detection = FaceDetection() self.face_recognition = FaceRecognition() self.arr_embeddings = pickle.load(open("data_embeddings", "rb")) self.labels = pickle.load(open("labels", "rb"))
import os from face_recognition import FaceRecognition if __name__ == '__main__': model_name = "face_recognition.h5" image_path = 'test.jpg' face_recognition = FaceRecognition() face_recognition.training() face_recognition.save_model(model_name) # model = FaceRecognition.load_saved_model(os.path.join("model", model_name)) #k = FaceRecognition.model_prediction(image_path, os.path.join("model", model_name), # os.path.join("model", "face_recognition_class_names.npy")) #print(f"detected class is {k}")
import os from face_recognition import FaceRecognition from face_detection import get_detected_face if __name__ == "__main__": model_name = "face_recognition.h5" image_path = 'ronaldo.jpg' face_recognition = FaceRecognition() face_recognition.train() face_recognition.save(model_name) # model = FaceRecognition.load_saved_model(os.path.join("model", model_name)) # f = FaceRecognition.model_predict(image_path, os.path.join("model", model_name), #os.path.join("model", "face_recognition_class_names.npy")) #print(f"This is {f}")
import os from face_recognition import FaceRecognition if __name__ == '__main__': model_path = "model" image_path = 'test.jpg' face_recognition = FaceRecognition() face_recognition.training() face_recognition.save_model(model_name) model = FaceRecognition.load_saved_model(model_path) k = FaceRecognition.model_prediction(image_path, model_path) print(f"detected class is {k}")
from face_recognition import FaceRecognition file_path = "path_of_the_file" key = "aws_key" secret = "aws_secret" token = "aws_token" instance = FaceRecognition(file_path, key, secret, token) results = instance.detection() if isinstance(results, dict): print("The details of the candidate are as follows: ") for each_key in results.keys(): print(each_key + '=' + str(results[each_key])) else: print(results)
import os from face_recognition import FaceRecognition if __name__ == '__main__': model_name = "face_recognition.h5" image_path = 'test.jpg' face_recognition = FaceRecognition() # face_recognition.training() # face_recognition.save_model(model_name) # model = FaceRecognition.load_saved_model(os.path.join("model", model_name)) k = FaceRecognition.model_prediction(image_path, os.path.join("model", model_name), os.path.join("model", "face_recognition_class_names.npy")) print(f"detected class is {k}")
if __name__ == '__main__': #classe que cria os alvos tempo = time.time() alvo = drawObj.Alvo() # conta quadros para desenhar novo alvo alvoQuadrosCount = 0 # classe detecta fluxo optico fluxo = fluxo.Fluxo() # guarda estado atual da aplicacao estado = 0 salvo = 'user.png' user1 = cv2.imread(salvo, 0) cam = Camera(1) faceTracker = roi.Detect() recon = FaceRecognition() contador = 0 while True: #print 'estdo = ', estado # captura frame frame = cam.preprocessa() # detecta faces frame = faceTracker.detectar(**frame) #if 'gray' in frame.keys(): # cv2.imshow('gray', frame['gray']) #if 'roi_face' in frame.keys(): # cv2.imshow('roi_face', frame['roi_face']) if 'roi_eyes' in frame.keys(): #cv2.imshow('roi_eyes', frame['roi_eyes']) estado = 1 key = cv2.waitKey(10)
import sys import unittest sys.path.append('../classes') sys.path.append('../algorithms') from report import Report from auxiliary import Auxiliary from face_recognition import FaceRecognition from eigenfaces import Eigenfaces auxiliary = Auxiliary() algorithm = Eigenfaces() faceRecog = FaceRecognition(algorithm, auxiliary) report = Report(faceRecog) class ReportSummaryTest(unittest.TestCase): def test1(self): wrong_report = Report(auxiliary) self.assertEqual(wrong_report.generate_report_summary(), "") def test2(self): self.assertEqual(report.generate_report_summary(), "") if __name__ == '__main__': unittest.main()
import cv2 from mtcnn import MTCNN from face_recognition import FaceRecognition detector = MTCNN() fr = FaceRecognition() image = cv2.cvtColor(cv2.imread("test.png"), cv2.COLOR_BGR2RGB) print(fr.predict(image)) exit() result = detector.detect_faces(image) # Result is an array with all the bounding boxes detected. We know that for 'ivan.jpg' there is only one. bounding_box = result[0]['box'] keypoints = result[0]['keypoints'] cv2.rectangle( image, (bounding_box[0], bounding_box[1]), (bounding_box[0] + bounding_box[2], bounding_box[1] + bounding_box[3]), (0, 155, 255), 2) bounding_box = result[1]['box'] cv2.rectangle( image, (bounding_box[0], bounding_box[1]), (bounding_box[0] + bounding_box[2], bounding_box[1] + bounding_box[3]), (0, 155, 255), 2) bounding_box = result[2]['box'] cv2.rectangle(