def load(self): logging.info('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=self.gpu_fraction) self.session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with self.session.as_default(): self.pnet, self.rnet, self.onet = detect_face.create_mtcnn(self.session, None)
def setup_app(app): """Initialize DNN objects """ global g_backbone global g_classifier global g_dog_names global g_facenet global g_dog_detector global g_session # get dog names with open('../data/class_names.json', 'r') as fp: g_dog_names = json.load(fp)['dog_names'] print(f"Loaded dog names: {len(g_dog_names)}") # initialize facenet g_session = tf.Session() p, r, o = detect_face.create_mtcnn(g_session, '../facenet/align/') g_facenet = [p, r, o] print("Loaded FACENET.") # intialize dog detector g_dog_detector = resnet50.ResNet50(weights='imagenet') g_dog_detector._make_predict_function() print("Loaded dog detector") # load DNN g_backbone = xception.Xception(weights='imagenet', include_top=False) g_backbone._make_predict_function() g_classifier = Sequential() g_classifier.add(GlobalAveragePooling2D(input_shape=(7, 7, 2048))) g_classifier.add(Dense(133, activation='softmax')) g_classifier.load_weights('../saved_models/weights.best.Xception.hdf5') g_classifier._make_predict_function() print("Load dog breed classifier")
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) tmp_image_paths = copy.copy(image_paths) img_list = [] face_area = [] file_list = [] for image in tmp_image_paths: img = misc.imread(os.path.expanduser(image), mode='RGB') img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) if len(bounding_boxes) < 1: image_paths.remove(image) print("can't detect face, remove ", image) continue for box in bounding_boxes: det = np.squeeze(box[0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear') prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) face_area.append( Image.open(image).crop((bb[0], bb[1], bb[2], bb[3]))) file_list.append(image) images = np.stack(img_list) return images, face_area, file_list
def main(data_dir, min_size): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, npy) minsize = min_size # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor dataset = face_net.get_dataset(data_dir) number_sample = 0 number_face_detected = 0 for cls in dataset: for image_path in cls.image_paths: number_sample = number_sample + 1 img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) if img.ndim == 2: img = face_net.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if (nrof_faces == 0): print('{0} face detected : {1}'.format( nrof_faces, image_path)) elif (nrof_faces == 2): print('{0} face detected : {1}'.format( nrof_faces, image_path)) number_face_detected = number_face_detected + 1 else: number_face_detected = number_face_detected + 1 print("Finish!!!!") print('Number face detected {0}'.format(number_face_detected))
from datetime import datetime input_video = "E:\\Document\\DeepLearning\\DataSet\\ForTesting\\Video\\Camera\\HuynhVanTien.mp4" output_dir = "E:\\Document\\DeepLearning\\DataSet\\ForTesting\\Video\\Camera\\RawImages1\\Detection\\Frame_Video\\TienHuynh" output_dir_face = "E:\\Document\\DeepLearning\\DataSet\\ForTesting\\Video\\Camera\\RawImages1\\Detection\\Face_video" modeldir = constants.CLASSIFIER_MODEL classifier_filename = constants.CLASSIFIER_FILE_VIDEO npy = '' train_img = constants.CLASSIFIER_DATA_DIR with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, npy) minsize = constants.FACE_REG_MINSIZE # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor margin = constants.FACE_REG_MARGIN frame_interval = 3 batch_size = 1000 image_size = 160 input_image_size = 160 HumanNames = os.listdir(train_img) HumanNames.sort() print('Loading Modal') face_net.load_model(modeldir)
def main(data_dir, output_dir): sleep(random.random()) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) # facenet.store_revision_info(src_path, output_dir, ' '.join('argument default')) dataset = face_net.get_dataset(data_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=constants.GPU_MEMORY_FRACTION_DEFAULT) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = constants.FACE_REG_MINSIZE # minimum size of face threshold = constants.ALIGN_THRESHOLD # three steps's threshold factor = constants.ALIGN_FACTOR # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) face_detected_list = [] nrof_images_total = 0 nrof_successfully_aligned = 0 if constants.ALIGN_RANDOM_ORDER: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if constants.ALIGN_RANDOM_ORDER: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: error_message = '{}: {}'.format(image_path, e) print(error_message) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) face_detected_list.append('Unable to align {0}'.format(image_path)) # text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = face_net.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if constants.ALIGN_DETECT_MULTIPLE_FACES: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - constants.COMPARE_MARGIN_DEFAULT / 2, 0) bb[1] = np.maximum(det[1] - constants.COMPARE_MARGIN_DEFAULT / 2, 0) bb[2] = np.minimum(det[2] + constants.COMPARE_MARGIN_DEFAULT / 2, img_size[1]) bb[3] = np.minimum(det[3] + constants.COMPARE_MARGIN_DEFAULT / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (constants.ALIGN_IMAGE_SIZE, constants.ALIGN_IMAGE_SIZE), interp='bilinear') nrof_successfully_aligned += 1 filename_base, file_extension = os.path.splitext(output_filename) if constants.ALIGN_DETECT_MULTIPLE_FACES: output_filename_n = "{}_{}{}".format(filename_base, i, file_extension) else: output_filename_n = "{}{}".format(filename_base, file_extension) misc.imsave(output_filename_n, scaled) face_detected_list.append('%s --- BOX [%d , %d , %d , %d]\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: face_detected_list.append('Unable to align {0}'.format(image_path)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) return nrof_images_total, nrof_successfully_aligned, face_detected_list
:param request: :return: """ return render(request, 'api/member/member.html') # 前方高能 # 该段代码占用过多CPU资源,放在全局供其他函数调用 with tf.Graph().as_default(): gpu_memory_fraction = 1.0 gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = create_mtcnn(sess, None) with tf.Graph().as_default(): sess = tf.Session() # 加载模型 meta_file, ckpt_file = get_model_filenames(MODELPATH) saver = tf.train.import_meta_graph(os.path.join(MODELPATH, meta_file)) saver.restore(sess, os.path.join(MODELPATH, ckpt_file)) # 获得输入输出张量 images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name( "phase_train:0") # 进行人脸识别,加载 print('Creating networks and loading parameters')
def main(image_path, data_dir, model_dir, classifier_file): npy = '' with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=constants. GPU_MEMORY_FRACTION_DEFAULT) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = constants.FACE_REG_MINSIZE # minimum size of face threshold = constants.ALIGN_THRESHOLD # three steps's threshold factor = constants.ALIGN_FACTOR # scale factor frame_interval = 3 image_size = 160 input_image_size = 160 human_names = os.listdir(data_dir) human_names.sort() print('Loading feature extraction model') face_net.load_model(model_dir) images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] classifier_filename_exp = os.path.expanduser(classifier_file) with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) c = 0 print('Start Recognition!') frame = cv2.imread(image_path, 0) time_f = frame_interval if c % time_f == 0: if frame.ndim == 2: frame = face_net.to_rgb(frame) frame = frame[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( frame, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('Face Detected: %d' % nrof_faces) if nrof_faces > 0: det = bounding_boxes[:, 0:4] cropped = [] scaled = [] scaled_reshape = [] bb = np.zeros((nrof_faces, 4), dtype=np.int32) for i in range(nrof_faces): emb_array = np.zeros((1, embedding_size)) bb[i][0] = det[i][0] bb[i][1] = det[i][1] bb[i][2] = det[i][2] bb[i][3] = det[i][3] # inner exception if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len( frame[0]) or bb[i][3] >= len(frame): print('face is too close') break cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :]) cropped[i] = face_net.flip(cropped[i], False) scaled.append( misc.imresize(cropped[i], (image_size, image_size), interp='bilinear')) scaled[i] = cv2.resize( scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC) scaled[i] = face_net.prewhiten(scaled[i]) scaled_reshape.append(scaled[i].reshape( -1, input_image_size, input_image_size, 3)) feed_dict = { images_placeholder: scaled_reshape[i], phase_train_placeholder: False } emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict) predictions = model.predict_proba(emb_array) print(predictions) best_class_indices = np.argmax(predictions, axis=1) # print(best_class_indices) best_class_probabilities = predictions[ np.arange(len(best_class_indices)), best_class_indices] print(best_class_probabilities) cv2.rectangle(frame, (bb[i][0], bb[i][1]), (bb[i][2], bb[i][3]), (0, 255, 0), 2) # boxing face # plot result idx under box text_x = bb[i][0] text_y = bb[i][3] - 10 print( i, 'Result Indices: ', best_class_indices[0], ' : ', 'Face detected of : {0}'.format( human_names[best_class_indices[0]])) print(human_names) for H_i in human_names: # print(H_i) if human_names[best_class_indices[ 0]] == H_i and best_class_probabilities >= constants.FACE_REG_POSSIBILITY: result_names = human_names[ best_class_indices[0]] cv2.putText(frame, str(i) + ': ' + result_names, (text_x, text_y), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), thickness=1, lineType=1) print('------------------') else: print('Unable to align') frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5) # resize frame (optional) cv2.imshow('Image', frame) cv2.imwrite('output/' + image_path.split('/')[-1], frame) if cv2.waitKey(1000000) & 0xFF == ord('q'): sys.exit("Thanks")
def align(image_path): print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) filename = os.path.splitext(os.path.split(image_path)[1])[0] try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) return if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('nrof_faces: %s' % nrof_faces) n = 0 if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces >= 1: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) #index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering #det = det[index,:] for one in det: one = np.squeeze(one) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(one[0] - 5.0 / 2, 0) bb[1] = np.maximum(one[1] - 5.0 / 2, 0) bb[2] = np.minimum(one[2] + 5.0 / 2, img_size[1]) bb[3] = np.minimum(one[3] + 5.0 / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (128, 128), interp='bilinear') misc.imsave('/dl/' + str(n) + '.png', scaled) n += 1 else: print('Unable to align "%s"' % image_path)
def face_verification(img_pairs_list): model = 'C:\\Users\\User\\.conda\\envs\\facenet_test\\Lib\\site-packages\\facenet\\align' model_facenet = r'C:\\Users\\User\\Desktop\\facenett\\20180402-114759' # 模型在你电脑中的路径 # mtcnn相关参数 minsize = 40 threshold = [0.4, 0.5, 0.6] # pnet、rnet、onet三个网络输出人脸的阈值,大于阈值则保留,小于阈值则丢弃 factor = 0.709 # scale factor # 创建mtcnn网络 with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, model) margin = 44 image_size = 160 with tf.Graph().as_default(): with tf.Session() as sess: # 根据模型文件载入模型 facenet.load_model(model_facenet) # 得到输入、输出等张量 images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") # 设置可视化进度条相关参数 jd = '\r %2d%%\t [%s%s]' bar_num_total = 50 total_num = len(img_pairs_list) result, dist = [], [] for i in range(len(img_pairs_list)): # 画进度条 if i % round( total_num / bar_num_total) == 0 or i == total_num - 1: bar_num_alright = round(bar_num_total * i / total_num) alright = '#' * bar_num_alright not_alright = '□' * (bar_num_total - bar_num_alright) percent = (bar_num_alright / bar_num_total) * 100 print(jd % (percent, alright, not_alright), end='') # 读取一对人脸图像 img_pairs = img_pairs_list[i] img_list = [] img1 = cv2.imread(img_pairs[0]) img2 = cv2.imread(img_pairs[1]) img_size1 = np.asarray(img1.shape)[0:2] img_size2 = np.asarray(img2.shape)[0:2] # 检测该对图像中的人脸 bounding_box1, _1 = detect_face.detect_face( img1, minsize, pnet, rnet, onet, threshold, factor) bounding_box2, _2 = detect_face.detect_face( img2, minsize, pnet, rnet, onet, threshold, factor) # 未检测到人脸,则将结果标为-1,后续计算准确率时排除 if len(bounding_box1) < 1 or len(bounding_box2) < 1: result.append(-1) dist.append(-1) continue # 将图片1加入img_list det = np.squeeze(bounding_box1[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size1[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size1[0]) cropped = img1[bb[1]:bb[3], bb[0]:bb[2], :] aligned = cv2.resize(cropped, (image_size, image_size)) prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) # 将图片2加入img_list det = np.squeeze(bounding_box2[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size2[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size2[0]) cropped = img2[bb[1]:bb[3], bb[0]:bb[2], :] aligned = cv2.resize(cropped, (image_size, image_size)) prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) images = np.stack(img_list) # 将两个人脸转化为512维的向量 feed_dict = { images_placeholder: images, phase_train_placeholder: False } emb = sess.run(embeddings, feed_dict=feed_dict) # 计算两个人脸向量的距离 ed = np.sqrt(np.sum(np.square(np.subtract(emb[0], emb[1])))) dist.append(ed) # 根据得出的人脸间的距离,判断是否属于同一个人 if ed <= 1.1: result.append(1) else: result.append(0) return result, dist
def RecognizeFace(frames, model=None, class_names=None): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, npy) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor margin = 32 frame_interval = 3 batch_size = 1000 image_size = 160 input_image_size = 160 print('Loading feature extraction model') facenet.load_model(modeldir) images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] classifier_filename_exp = os.path.expanduser(classifier_filename) if model == None or class_names == None: with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) # video_capture = cv2.VideoCapture("akshay_mov.mp4") c = 0 HumanNames = class_names print(HumanNames) print('Start Recognition!') prevTime = 0 # ret, frame = video_capture.read() #frame = cv2.imread(img_path,0) #frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5) #resize frame (optional) total_faces_detected = {} for frame in frames: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) curTime = time.time() + 1 # calc fps timeF = frame_interval if (c % timeF == 0): find_results = [] if frame.ndim == 2: frame = facenet.to_rgb(frame) frame = frame[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( frame, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('Face Detected: %d' % nrof_faces) if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(frame.shape)[0:2] cropped = [] scaled = [] scaled_reshape = [] bb = np.zeros((nrof_faces, 4), dtype=np.int32) for i in range(nrof_faces): emb_array = np.zeros((1, embedding_size)) bb[i][0] = det[i][0] bb[i][1] = det[i][1] bb[i][2] = det[i][2] bb[i][3] = det[i][3] #inner exception if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][ 2] >= len(frame[0]) or bb[i][3] >= len( frame): print('face is too close') break cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :]) cropped[i] = facenet.flip(cropped[i], False) scaled.append( misc.imresize(cropped[i], (image_size, image_size), interp='bilinear')) scaled[i] = cv2.resize( scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC) scaled[i] = facenet.prewhiten(scaled[i]) scaled_reshape.append(scaled[i].reshape( -1, input_image_size, input_image_size, 3)) feed_dict = { images_placeholder: scaled_reshape[i], phase_train_placeholder: False } emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict) predictions = model.predict_proba(emb_array) print(predictions) best_class_indices = np.argmax(predictions, axis=1) # print(best_class_indices) best_class_probabilities = predictions[ np.arange(len(best_class_indices)), best_class_indices] #plot result idx under box text_x = bb[i][0] text_y = bb[i][3] + 20 print('Result Indices: ', best_class_indices[0]) print(HumanNames) for H_i in HumanNames: # print(H_i) if HumanNames[best_class_indices[ 0]] == H_i and best_class_probabilities >= 0.4: result_names = HumanNames[ best_class_indices[0]] if result_names in total_faces_detected: if predictions[0][best_class_indices[ 0]] > total_faces_detected[ result_names]: total_faces_detected[ result_names] = predictions[ 0][best_class_indices[ 0]] else: total_faces_detected[ result_names] = predictions[0][ best_class_indices[0]] else: print("BHAKKK") if len(total_faces_detected) == 0: return None else: x = sorted(total_faces_detected.items(), key=operator.itemgetter(1)) return [x[len(x) - 1][0]]
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: bounding_box_size = (det[:, 2] - det[:, 0]) * ( det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det = det[index, :] det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize( cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 misc.imsave(output_filename, scaled) text_file.write( '%s %d %d %d %d\n' % (output_filename, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(test_dir, data_dir, model_dir, classifier_file): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=constants. GPU_MEMORY_FRACTION_DEFAULT) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = constants.FACE_REG_MINSIZE # minimum size of face threshold = constants.ALIGN_THRESHOLD # three steps's threshold factor = constants.ALIGN_FACTOR # scale factor image_size = 160 input_image_size = 160 human_names = os.listdir(data_dir) human_names.sort() print('Loading feature extraction model') face_net.load_model(model_dir) images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] classifier_filename_exp = os.path.expanduser(classifier_file) with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) c = 0 print('Start Recognition!') dataset = face_net.get_dataset(test_dir) number_of_face_recognition = 0 for cls in dataset: for image_path in cls.image_paths: frame = cv2.imread(image_path, 0) if frame.ndim == 2: frame = face_net.to_rgb(frame) frame = frame[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( frame, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] cropped = [] scaled = [] scaled_reshape = [] bb = np.zeros((nrof_faces, 4), dtype=np.int32) for i in range(nrof_faces): emb_array = np.zeros((1, embedding_size)) bb[i][0] = det[i][0] bb[i][1] = det[i][1] bb[i][2] = det[i][2] bb[i][3] = det[i][3] # inner exception if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][ 2] >= len( frame[0]) or bb[i][3] >= len(frame): print( 'Face is too close {0}'.format(image_path)) break cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :]) cropped[i] = face_net.flip(cropped[i], False) scaled.append( misc.imresize(cropped[i], (image_size, image_size), interp='bilinear')) scaled[i] = cv2.resize( scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC) scaled[i] = face_net.prewhiten(scaled[i]) scaled_reshape.append(scaled[i].reshape( -1, input_image_size, input_image_size, 3)) feed_dict = { images_placeholder: scaled_reshape[i], phase_train_placeholder: False } emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict) predictions = model.predict_proba(emb_array) best_class_indices = np.argmax(predictions, axis=1) # print(best_class_indices) best_class_probabilities = predictions[ np.arange(len(best_class_indices)), best_class_indices] # plot result idx under box for H_i in human_names: # print(H_i) if human_names[best_class_indices[0]] == H_i \ and H_i in image_path: print('{0} : {1}'.format( best_class_probabilities, image_path)) number_of_face_recognition = number_of_face_recognition + 1 else: print('Unable to recognition {0}'.format(image_path)) print("Finish!!!!") print('Number face detected {0}'.format(number_of_face_recognition))