Example #1
0
def test_hermitian_tuple_scorer():
    emb = [[1., 1, 0, 3], [0, 1, 0, 1], [-1, 1, 1, 5]]
    tuples_var = tf.Variable([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1]])
    (g, params) = hermitian_tuple_scorer(tuples_var, emb0=emb, symmetry_coef=(1.0, 0.0))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var, emb0=emb, symmetry_coef=(0.0, 1.0))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var, emb0=emb, symmetry_coef=(0.5, 0.5))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var, emb0=emb, symmetry_coef=(0.9, 0.1))
    print(tf_eval(g))  # close to symmetric
    (g, params) = hermitian_tuple_scorer(tuples_var, emb0=emb, symmetry_coef=(0.1, 0.9))
    print(tf_eval(g))  # close to anti-symmetric
Example #2
0
def test_loss_func_softmax():
    """Test the softmax computation
    Returns:
        Nothing
    >>> test_loss_func_softmax()
    [ 2.00384593  2.19245744  0.31507221  1.76036525]
    [ 0.20384566  0.59245753  1.31507206  0.26036522]
    """
    pred = tf.Variable([[1.1, 2.1, 3.9], [-1.0, -0.5, -2.1], [1.1, 2.1, -3.9], [-1.0, 0.5, -2.1]])
    gold = tf.Variable([1, 2, 1, 0])
    print(tf_eval(loss_func_softmax(pred, gold)))
    gold = tf.Variable([2, 1, 0, 1])
    print(tf_eval(loss_func_softmax(pred, gold)))
Example #3
0
def test_sparse_relational_hermitian_scoring():
    emb = tf.Variable([[1., 1, 0, 3], [0, 1, 0, 1], [-1, 1, 1, 5],
                       [-3, 1, 0, 2], [-1, 2, -1, -5]])
    tuples_var = tf.Variable([[0, 3, 1], [1, 3, 0], [0, 3, 2], [2, 4, 0],
                              [1, 4, 2], [2, 4, 1]])
    g = sparse_relational_hermitian_scoring(emb, tuples_var)
    print(tf_eval(g))  # close to anti-symmetric
def test_learning_factorization(verbose=False):
    n = 9
    m = 8
    y_mat = toy_factorization_problem(n=n, m=m, rk=3, noise=1)
    rank = 2
    batch_size = n * m
    tuples = mat2tuples(y_mat)
    tuple_iterable = data_to_batches(tuples, minibatch_size=batch_size)
    # tuple_iterable = positive_and_negative_tuple_sampler(mat2tuples(y_mat), minibatch_size=batch_size)
    sampler, (x, y) = feed_dict_sampler(tuple_iterable, types=[np.int64, np.float32])
    loss_op = tf.reduce_mean(loss_func(multilinear_tuple_scorer(x, rank=rank, n_emb=n+m)[0], y, 'quadratic'))
    initial_losses = [tf_eval(loss_op, f) for _, f in sampler]
    if verbose:
        print(initial_losses)
    # hooks = [lambda s, e, it, l: it and ((it % 100) == 0) and print("%d) loss=%f" % (it, l))]
    hooks = [lambda it, b, l: it and ((it % 1) == 0) and print("{0}) train loss={1}".format(it, l[0]))]

    emb, = learn(loss_op, sampler, tf.train.AdamOptimizer(learning_rate=0.1), hooks, max_epochs=200)
    # emb, = learn(l, sampler, tf.train.GradientDescentOptimizer(learning_rate=0.5), hooks, max_epochs=500)
    # emb, = learn(l, sampler, tf.train.AdagradOptimizer(0.01, initial_accumulator_value=0.01), hooks, max_epochs=500)
    mat0 = svd_factorize_matrix(y_mat, rank=2)  # exact svd solution
    mat = emb[:n, :].dot(emb[n:, :].T)
    if verbose:
        print(np.linalg.norm(mat - mat0))
    assert(np.linalg.norm(mat - mat0) < 1e-3)
Example #5
0
def test_hermitian_tuple_scorer():
    emb = [[1., 1, 0, 3], [0, 1, 0, 1], [-1, 1, 1, 5]]
    tuples_var = tf.Variable([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1]])
    (g, params) = hermitian_tuple_scorer(tuples_var,
                                         emb0=emb,
                                         symmetry_coef=(1.0, 0.0))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var,
                                         emb0=emb,
                                         symmetry_coef=(0.0, 1.0))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var,
                                         emb0=emb,
                                         symmetry_coef=(0.5, 0.5))
    print(tf_eval(g))
    (g, params) = hermitian_tuple_scorer(tuples_var,
                                         emb0=emb,
                                         symmetry_coef=(0.9, 0.1))
    print(tf_eval(g))  # close to symmetric
    (g, params) = hermitian_tuple_scorer(tuples_var,
                                         emb0=emb,
                                         symmetry_coef=(0.1, 0.9))
    print(tf_eval(g))  # close to anti-symmetric
Example #6
0
def test_learning_factorization(verbose=False):
    n = 9
    m = 8
    y_mat = toy_factorization_problem(n=n, m=m, rk=3, noise=1)
    rank = 2
    batch_size = n * m
    tuples = mat2tuples(y_mat)
    tuple_iterable = data_to_batches(tuples, minibatch_size=batch_size)
    # tuple_iterable = positive_and_negative_tuple_sampler(mat2tuples(y_mat), minibatch_size=batch_size)
    sampler, (x, y) = feed_dict_sampler(tuple_iterable,
                                        types=[np.int64, np.float32])
    loss_op = tf.reduce_mean(
        loss_func(
            multilinear_tuple_scorer(x, rank=rank, n_emb=n + m)[0], y,
            'quadratic'))
    initial_losses = [tf_eval(loss_op, f) for _, f in sampler]
    if verbose:
        print(initial_losses)
    # hooks = [lambda s, e, it, l: it and ((it % 100) == 0) and print("%d) loss=%f" % (it, l))]
    hooks = [
        lambda it, b, l: it and (
            (it % 1) == 0) and print("{0}) train loss={1}".format(it, l[0]))
    ]

    emb, = learn(loss_op,
                 sampler,
                 tf.train.AdamOptimizer(learning_rate=0.1),
                 hooks,
                 max_epochs=200)
    # emb, = learn(l, sampler, tf.train.GradientDescentOptimizer(learning_rate=0.5), hooks, max_epochs=500)
    # emb, = learn(l, sampler, tf.train.AdagradOptimizer(0.01, initial_accumulator_value=0.01), hooks, max_epochs=500)
    mat0 = svd_factorize_matrix(y_mat, rank=2)  # exact svd solution
    mat = emb[:n, :].dot(emb[n:, :].T)
    if verbose:
        print(np.linalg.norm(mat - mat0))
    assert (np.linalg.norm(mat - mat0) < 1e-3)
Example #7
0
def test_sparse_relational_hermitian_scoring():
    emb = tf.Variable([[1., 1, 0, 3], [0, 1, 0, 1], [-1, 1, 1, 5], [-3, 1, 0, 2], [-1, 2, -1, -5]]) 
    tuples_var = tf.Variable([[0, 3, 1], [1, 3, 0], [0, 3, 2], [2, 4, 0], [1, 4, 2], [2, 4, 1]])
    g = sparse_relational_hermitian_scoring(emb, tuples_var)
    print(tf_eval(g))  # close to anti-symmetric