temp_data3, time_slice, train3 = init_data3(time_slice, train, region, filter_count) axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3(temp_data3, time_slice, train3, order) tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice) U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7) A3 = reconstruct(S3, U3) x_values = [] y_values1 = [] y_values2 = [] y_values3 = [] y_values4 = [] while top_k <= 10: avg_precision, avg_recall, avg_f1_score, availability = recommend(A, recommends, unknow_poi_set, time_slice, top_k, order) print "avg_recall(pmpt): ", avg_recall avg_precision2, avg_recall2, avg_f1_score2, availability2 = recommend2(A2, recommends2, unknow_poi_set2, time_slice, top_k, order) print "avg_recall(fmc): ", avg_recall2 avg_precision3, avg_recall3, avg_f1_score3, availability3 = recommend3(A3, recommends3, unknow_poi_set3, time_slice, top_k, order) print "avg_recall(tf): ", avg_recall3 y_values1.append(avg_recall) y_values2.append(avg_recall2) y_values3.append(avg_recall3) # y_values4.append(availability) x_values.append(top_k) top_k += 1 pylab.plot(x_values, y_values1, 'rs', linewidth=1, linestyle="-", label=u"PMPT") pylab.plot(x_values, y_values2, 'gs', linewidth=1, linestyle="-", label=u"FMC") pylab.plot(x_values, y_values3, 'bs', linewidth=1, linestyle="-", label=u"TF")
tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice) U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7) A3 = reconstruct(S3, U3) x_values = [] y_values1 = [] y_values2 = [] y_values3 = [] y_values4 = [] while top_k <= 10: avg_precision, avg_recall, avg_f1_score, availability = recommend( A, recommends, unknow_poi_set, time_slice, top_k, order) print "avg_recall(pmpt): ", avg_recall avg_precision2, avg_recall2, avg_f1_score2, availability2 = recommend2( A2, recommends2, unknow_poi_set2, time_slice, top_k, order) print "avg_recall(fmc): ", avg_recall2 avg_precision3, avg_recall3, avg_f1_score3, availability3 = recommend3( A3, recommends3, unknow_poi_set3, time_slice, top_k, order) print "avg_recall(tf): ", avg_recall3 y_values1.append(avg_recall) y_values2.append(avg_recall2) y_values3.append(avg_recall3) # y_values4.append(availability) x_values.append(top_k) top_k += 1 pylab.plot(x_values, y_values1,