def test_round_trip_smoke(self): original = GroupMetricSet() original.model_type = GroupMetricSet.BINARY_CLASSIFICATION original.y_true = [0, 1, 0, 0] original.y_pred = [1, 1, 1, 0] original.groups = [0, 1, 2, 0] original.group_title = 123 # Some wholly synthetic metrics firstMetric = GroupMetricResult() firstMetric.overall = 0.2 firstMetric.by_group[0] = 0.25 firstMetric.by_group[1] = 0.5 firstMetric.by_group[2] = 0.2 secondMetric = GroupMetricResult() secondMetric.overall = 0.6 secondMetric.by_group[0] = 0.75 secondMetric.by_group[1] = 0.25 secondMetric.by_group[2] = 0.25 metric_dict = { GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric, GroupMetricSet.GROUP_MISS_RATE: secondMetric } original.metrics = metric_dict original.group_names = ['First', 'Second', 'Something else'] intermediate_dict = original.to_dict() result = GroupMetricSet.from_dict(intermediate_dict) assert original == result
def test_group_names_do_not_match_groups(self): target = GroupMetricSet() target.model_type = GroupMetricSet.BINARY_CLASSIFICATION target.y_true = [0, 1, 0, 0] target.y_pred = [1, 1, 1, 0] target.groups = [0, 1, 1, 0] # Some wholly synthetic metrics firstMetric = GroupMetricResult() firstMetric.overall = 0.2 firstMetric.by_group[0] = 0.3 firstMetric.by_group[1] = 0.4 secondMetric = GroupMetricResult() secondMetric.overall = 0.6 secondMetric.by_group[0] = 0.7 secondMetric.by_group[1] = 0.8 metric_dict = { GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric, GroupMetricSet.GROUP_MISS_RATE: secondMetric } target.metrics = metric_dict target.group_names = ['First'] target.group_title = "Some string" with pytest.raises(ValueError) as exception_context: target.check_consistency() expected = "Count of group_names not the same as the number of unique groups" assert exception_context.value.args[0] == expected
def test_length_mismatch_groups(self): target = GroupMetricSet() target.y_true = [0, 1, 0, 1] target.y_pred = [0, 1, 1, 0] target.groups = [0, 1, 1] with pytest.raises(ValueError) as exception_context: target.check_consistency() assert exception_context.value.args[ 0] == "Lengths of y_true, y_pred and groups must match"
def test_metric_has_bad_groups(self): target = GroupMetricSet() target.y_true = [0, 1, 1, 1, 0] target.y_pred = [1, 1, 1, 0, 0] target.groups = [0, 1, 0, 1, 1] bad_metric = GroupMetricResult() bad_metric.by_group[0] = 0.1 metric_dict = {'bad_metric': bad_metric} target.metrics = metric_dict with pytest.raises(ValueError) as exception_context: target.check_consistency() expected = "The groups for metric bad_metric do not match the groups property" assert exception_context.value.args[0] == expected
def test_to_dict_smoke(self): target = GroupMetricSet() target.model_type = GroupMetricSet.BINARY_CLASSIFICATION target.y_true = [0, 1, 0, 0] target.y_pred = [1, 1, 1, 0] target.groups = [0, 1, 1, 0] # Some wholly synthetic metrics firstMetric = GroupMetricResult() firstMetric.overall = 0.2 firstMetric.by_group[0] = 0.3 firstMetric.by_group[1] = 0.4 secondMetric = GroupMetricResult() secondMetric.overall = 0.6 secondMetric.by_group[0] = 0.7 secondMetric.by_group[1] = 0.8 metric_dict = { GroupMetricSet.GROUP_ACCURACY_SCORE: firstMetric, GroupMetricSet.GROUP_MISS_RATE: secondMetric } target.metrics = metric_dict target.group_names = ['First', 'Second'] target.group_title = "Some string" result = target.to_dict() assert result['predictionType'] == 'binaryClassification' assert np.array_equal(target.y_true, result['trueY']) assert len(result['predictedYs']) == 1 assert np.array_equal(result['predictedYs'][0], target.y_pred) assert len(result['precomputedMetrics']) == 1 assert len(result['precomputedMetrics'][0]) == 1 rmd = result['precomputedMetrics'][0][0] assert len(rmd) == 2 assert rmd['accuracy_score']['global'] == 0.2 assert rmd['accuracy_score']['bins'][0] == 0.3 assert rmd['accuracy_score']['bins'][1] == 0.4 assert rmd['miss_rate']['global'] == 0.6 assert rmd['miss_rate']['bins'][0] == 0.7 assert rmd['miss_rate']['bins'][1] == 0.8 assert result['precomputedBins'][0]['featureBinName'] == "Some string" assert np.array_equal(result['precomputedBins'][0]['binLabels'], ['First', 'Second'])
def test_groups_strings(self): target = GroupMetricSet() with pytest.raises(ValueError) as exception_context: target.groups = ['0', '1', '2'] msg = "The unique values of the groups property must be sequential integers from zero" assert exception_context.value.args[0] == msg
def test_groups(self): target = GroupMetricSet() target.groups = [0, 1, 2] assert isinstance(target.groups, np.ndarray) assert np.array_equal(target.groups, [0, 1, 2])