Example #1
0
 def __init__(self,
              dataX,
              dataA,
              dataY,
              learner,
              cons_class,
              eps,
              B,
              opt_lambda=True,
              debug=False):
     self.X = dataX
     self.obj = moments.MisclassError(dataX, dataA, dataY)
     self.cons = cons_class(dataX, dataA, dataY)
     self.pickled_learner = pickle.dumps(learner)
     self.eps = eps
     self.B = B
     self.opt_lambda = opt_lambda
     self.debug = debug
     self.hs = pd.Series()
     self.classifiers = pd.Series()
     self.errors = pd.Series()
     self.gammas = pd.DataFrame()
     self.n = self.X.shape[0]
     self.n_oracle_calls = 0
     self.last_linprog_n_hs = 0
     self.last_linprog_result = None
Example #2
0
    for test in tests:
        res_tuple = red.expgrad(dataX,
                                dataA,
                                dataY,
                                learner,
                                cons=test["cons_class"](),
                                eps=test["eps"])
        res = res_tuple._asdict()
        Q = res["best_classifier"]
        res["n_classifiers"] = len(res["classifiers"])

        disp = test["cons_class"]()
        disp.init(dataX, dataA, dataY)

        error = moments.MisclassError()
        error.init(dataX, dataA, dataY)

        res["disp"] = disp.gamma(Q).max()
        res["error"] = error.gamma(Q)[0]
        report_header = "testing (%s, eps=%.3f)" \
                        % (test["cons_class"].short_name, test["eps"])
        report_list = []
        test_res_float("best_gap", res, test, report_list)
        test_res_int("last_t", res, test, report_list)
        test_res_int("best_t", res, test, report_list)
        test_res_float("disp", res, test, report_list)
        test_res_float("error", res, test, report_list)
        test_res_int("n_oracle_calls", res, test, report_list)
        test_res_int("n_classifiers", res, test, report_list)
        if report_list:
Example #3
0
    learner = LeastSquaresLearner()

    for test in tests:
        res_tuple = red.expgrad(dataX,
                                dataA,
                                dataY,
                                learner,
                                cons_class=test["cons_class"],
                                eps=test["eps"])
        res = res_tuple._asdict()
        Q = res["best_classifier"]
        res["n_classifiers"] = len(res["classifiers"])

        res["disp"] = test["cons_class"](dataX, dataA, dataY).gamma(Q).max()
        res["error"] = moments.MisclassError(dataX, dataA, dataY).gamma(Q)[0]
        report_header = "testing (%s, eps=%.3f)" \
                        % (test["cons_class"].short_name, test["eps"])
        report_list = []
        test_res_float("best_gap", res, test, report_list)
        test_res_int("last_t", res, test, report_list)
        test_res_int("best_t", res, test, report_list)
        test_res_float("disp", res, test, report_list)
        test_res_float("error", res, test, report_list)
        test_res_int("n_oracle_calls", res, test, report_list)
        test_res_int("n_classifiers", res, test, report_list)
        if report_list:
            print("%s: %s" % (report_header, ", ".join(report_list)))
        else:
            print("%s: ok" % report_header)