Example #1
0
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        if self._dummy_batch == "DUMMY":
            self._dummy_batch = samples[0]

        self._set_seed()
        self.model.train()
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        for i, sample in enumerate(samples):
            sample = self._prepare_sample(sample)
            if sample is None:
                # when sample is None, run forward/backward on a dummy batch
                # and ignore the resulting gradients
                sample = self._prepare_sample(self._dummy_batch)
                is_dummy_batch = True
            else:
                is_dummy_batch = False

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (
                    self.data_parallel_world_size > 1
                    and hasattr(self.model, "no_sync")
                    and i < len(samples) - 1
                ):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                    )
                    del loss

                logging_outputs.append(logging_output)
                sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                else:
                    raise e

            if self.tpu and i < len(samples) - 1:
                # tpu-comment: every XLA operation before marking step is
                # appended to the IR graph, and processing too many batches
                # before marking step can lead to OOM errors.
                # To handle gradient accumulation use case, we explicitly
                # mark step here for every forward pass without a backward pass
                import torch_xla.core.xla_model as xm
                xm.mark_step()

        if is_dummy_batch:
            if torch.is_tensor(sample_size):
                sample_size.zero_()
            else:
                sample_size *= 0.

        if torch.is_tensor(sample_size):
            sample_size = sample_size.float()
        else:
            sample_size = float(sample_size)

        # gather logging outputs from all replicas
        if self._sync_stats():
            logging_outputs, (sample_size, ooms) = self._aggregate_logging_outputs(
                logging_outputs, sample_size, ooms, ignore=is_dummy_batch,
            )

        overflow = False
        try:
            if self.tpu and self.data_parallel_world_size > 1:
                import torch_xla.core.xla_model as xm
                gradients = xm._fetch_gradients(self.optimizer.optimizer)
                xm.all_reduce('sum', gradients, scale=1.0 / self.data_parallel_world_size)

            # multiply gradients by (# GPUs / sample_size) since DDP
            # already normalizes by the number of GPUs. Thus we get
            # (sum_of_gradients / sample_size).
            if not self.args.use_bmuf:
                self.optimizer.multiply_grads(self.data_parallel_world_size / sample_size)
            elif sample_size > 0:  # BMUF needs to check sample size
                num = self.data_parallel_world_size if self._sync_stats() else 1
                self.optimizer.multiply_grads(num / sample_size)

            # clip grads
            grad_norm = self.clip_grad_norm(self.args.clip_norm)

            # check that grad norms are consistent across workers
            if (
                not self.args.use_bmuf
                and self.args.distributed_wrapper != 'SlowMo'
                and not self.tpu
            ):
                self._check_grad_norms(grad_norm)

            # take an optimization step
            self.optimizer.step()
        except FloatingPointError:
            # re-run the forward and backward pass with hooks attached to print out where it fails
            with NanDetector(self.model):
                self.task.train_step(
                    sample, self.model, self.criterion, self.optimizer, self.get_num_updates(),
                    ignore_grad=False
                )
            raise
        except OverflowError as e:
            overflow = True
            logger.info("NOTE: overflow detected, " + str(e))
            grad_norm = torch.tensor(0.).cuda()
            self.zero_grad()
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        # Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step
        if hasattr(self.model, 'perform_additional_optimizer_actions'):
            if hasattr(self.optimizer, 'fp32_params'):
                self.model.perform_additional_optimizer_actions(self.optimizer.optimizer, self.optimizer.fp32_params)
            else:
                self.model.perform_additional_optimizer_actions(self.optimizer.optimizer)

        if not overflow or self.args.distributed_wrapper == 'SlowMo':
            self.set_num_updates(self.get_num_updates() + 1)

            if self.tpu:
                # mark step on TPUs
                import torch_xla.core.xla_model as xm
                xm.mark_step()

                # only log stats every log_interval steps
                # this causes wps to be misreported when log_interval > 1
                logging_output = {}
                if self.get_num_updates() % self.args.log_interval == 0:
                    logging_output = self._reduce_and_log_stats(
                        logging_outputs, sample_size, grad_norm,
                    )

                # log whenever there's an XLA compilation, since these
                # slow down training and may indicate opportunities for
                # optimization
                self._check_xla_compilation()
            else:
                # log stats
                logging_output = self._reduce_and_log_stats(
                    logging_outputs, sample_size, grad_norm,
                )

                # clear CUDA cache to reduce memory fragmentation
                if (
                    self.cuda
                    and self.args.empty_cache_freq > 0
                    and (
                        (self.get_num_updates() + self.args.empty_cache_freq - 1)
                        % self.args.empty_cache_freq
                    ) == 0
                ):
                    torch.cuda.empty_cache()

        if self.args.fp16:
            metrics.log_scalar("loss_scale", self.optimizer.scaler.loss_scale, priority=700, round=0)

        metrics.log_stop_time("train_wall")

        return logging_output
Example #2
0
 def lr_step_update(self):
     """Update the learning rate after each update."""
     new_lr = self.lr_scheduler.step_update(self.get_num_updates())
     metrics.log_scalar("lr", new_lr, weight=0, priority=300)
     return new_lr
Example #3
0
 def reduce_metrics(logging_outputs) -> None:
     """Aggregate logging outputs from data parallel training."""
     CrossEntropyCriterion.reduce_metrics(logging_outputs)
     num_corr = sum(log.get("num_corr", 0) for log in logging_outputs)
     num_tot = sum(log.get("num_tot", 0) for log in logging_outputs)
     metrics.log_scalar("accuracy", num_corr.float() / num_tot * 100 if num_tot > 0 else 0.0, num_tot, round=3)
Example #4
0
 def set_num_updates(self, num_updates):
     """Set the number of parameters updates."""
     self._num_updates = num_updates
     self.lr_step_update()
     metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
Example #5
0
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        if self._dummy_batch == "DUMMY":
            self._dummy_batch = samples[0]

        self._set_seed()
        self.model.train()
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        for i, sample in enumerate(samples):
            sample = self._prepare_sample(sample)
            if sample is None:
                # when sample is None, run forward/backward on a dummy batch
                # and ignore the resulting gradients
                sample = self._prepare_sample(self._dummy_batch)
                is_dummy_batch = True
            else:
                is_dummy_batch = False

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (
                    self.args.distributed_world_size > 1
                    and hasattr(self.model, "no_sync")
                    and i < len(samples) - 1
                ):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                    )
                    del loss

                logging_outputs.append(logging_output)
                if not is_dummy_batch:
                    sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                else:
                    raise e

        # gather logging outputs from all replicas
        if self._sync_stats():
            logging_outputs, (sample_size, ooms) = self._aggregate_logging_outputs(
                logging_outputs, sample_size, ooms, ignore=is_dummy_batch,
            )

        metrics.log_scalar("oom", ooms, len(samples), priority=600, round=3)
        if ooms == self.args.distributed_world_size * len(samples):
            logger.warning("OOM in all workers, skipping update")
            self.zero_grad()
            return None

        try:
            # normalize grads by sample size
            if sample_size > 0:
                if self._sync_stats():
                    # multiply gradients by (# GPUs / sample_size) since DDP
                    # already normalizes by the number of GPUs. Thus we get
                    # (sum_of_gradients / sample_size).
                    self.optimizer.multiply_grads(self.args.distributed_world_size / sample_size)
                else:
                    self.optimizer.multiply_grads(1 / sample_size)

            # clip grads
            grad_norm = self.optimizer.clip_grad_norm(self.args.clip_norm)

            # check that grad norms are consistent across workers
            if not self.args.use_bmuf:
                self._check_grad_norms(grad_norm)

            # take an optimization step
            self.optimizer.step()
            self.set_num_updates(self.get_num_updates() + 1)

            # log stats
            logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
            metrics.log_speed("ups", 1., ignore_first=10, priority=100, round=2)
            metrics.log_scalar("gnorm", utils.item(grad_norm), priority=400, round=3)
            metrics.log_scalar(
                "clip",
                100 if grad_norm > self.args.clip_norm > 0 else 0,
                priority=500,
                round=1,
            )

            # clear CUDA cache to reduce memory fragmentation
            if (
                self.args.empty_cache_freq > 0
                and (
                    (self.get_num_updates() + self.args.empty_cache_freq - 1)
                    % self.args.empty_cache_freq
                ) == 0
                and torch.cuda.is_available()
                and not self.args.cpu
            ):
                torch.cuda.empty_cache()
        except FloatingPointError:
            # re-run the forward and backward pass with hooks attached to print out where it fails
            with NanDetector(self.model):
                self.task.train_step(
                    sample, self.model, self.criterion, self.optimizer, self.get_num_updates(),
                    ignore_grad=False
                )
            raise
        except OverflowError as e:
            logger.info("NOTE: overflow detected, " + str(e))
            self.zero_grad()
            logging_output = None
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        if self.args.fp16:
            metrics.log_scalar("loss_scale", self.optimizer.scaler.loss_scale, priority=700, round=0)

        metrics.log_stop_time("train_wall")

        return logging_output
Example #6
0
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        if self._dummy_batch == "DUMMY":
            self._dummy_batch = samples[0]

        self._set_seed()
        #print("MODEL TRAIN")
        self.model.train()
        #print("CRITERION TRAIN")
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        #print(samples)
        for i, sample in enumerate(samples):
            #print(i)
            sample = self._prepare_sample(sample)
            if sample is None:
                # when sample is None, run forward/backward on a dummy batch
                # and ignore the resulting gradients
                sample = self._prepare_sample(self._dummy_batch)
                is_dummy_batch = True
            else:
                is_dummy_batch = False

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (self.data_parallel_world_size > 1
                        and hasattr(self.model, "no_sync")
                        and i < len(samples) - 1):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                    )
                    del loss

                logging_outputs.append(logging_output)
                sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                else:
                    raise e

        if torch.is_tensor(sample_size):
            sample_size = sample_size.float()
        else:
            sample_size = float(sample_size)

        if is_dummy_batch:
            sample_size *= 0.  # multiply by 0 to preserve device

        # gather logging outputs from all replicas
        if self._sync_stats():
            logging_outputs, (sample_size,
                              ooms) = self._aggregate_logging_outputs(
                                  logging_outputs,
                                  sample_size,
                                  ooms,
                                  ignore=is_dummy_batch,
                              )

        overflow = False
        try:
            # multiply gradients by (# GPUs / sample_size) since DDP
            # already normalizes by the number of GPUs. Thus we get
            # (sum_of_gradients / sample_size).
            if not self.args.use_bmuf:
                multiplier = self.data_parallel_world_size
                self.optimizer.multiply_grads(multiplier / sample_size)
            elif sample_size > 0:  # BMUF needs to check sample size
                num = self.data_parallel_world_size if self._sync_stats(
                ) else 1
                self.optimizer.multiply_grads(num / sample_size)

            # clip grads
            grad_norm = self.clip_grad_norm(self.args.clip_norm)

            # check that grad norms are consistent across workers
            if not self.args.use_bmuf and self.args.distributed_wrapper != 'SlowMo':
                self._check_grad_norms(grad_norm)

            # take an optimization step
            self.optimizer.step()
        except FloatingPointError:
            # re-run the forward and backward pass with hooks attached to print out where it fails
            with NanDetector(self.model):
                self.task.train_step(sample,
                                     self.model,
                                     self.criterion,
                                     self.optimizer,
                                     self.get_num_updates(),
                                     ignore_grad=False)
            raise
        except OverflowError as e:
            overflow = True
            logger.info("NOTE: overflow detected, " + str(e))
            grad_norm = torch.tensor(0.).cuda()
            self.zero_grad()
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        # Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step
        if hasattr(self.model, 'perform_additional_optimizer_actions'):
            if hasattr(self.optimizer, 'fp32_params'):
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer, self.optimizer.fp32_params)
            else:
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer)

        if not overflow or self.args.distributed_wrapper == 'SlowMo':
            self.set_num_updates(self.get_num_updates() + 1)

            # log stats
            logging_output = self._reduce_and_log_stats(
                logging_outputs,
                sample_size,
                grad_norm,
            )

        # clear CUDA cache to reduce memory fragmentation
        if (self.args.empty_cache_freq > 0 and
            ((self.get_num_updates() + self.args.empty_cache_freq - 1) %
             self.args.empty_cache_freq) == 0 and torch.cuda.is_available()
                and not self.args.cpu):
            torch.cuda.empty_cache()

        if self.args.fp16:
            metrics.log_scalar("loss_scale",
                               self.optimizer.scaler.loss_scale,
                               priority=700,
                               round=0)

        metrics.log_stop_time("train_wall")

        return logging_output
Example #7
0
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        self._set_seed()
        self.model.train()
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        for i, sample in enumerate(samples):
            sample, is_dummy_batch = self._prepare_sample(sample)

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (
                    self.data_parallel_world_size > 1
                    and hasattr(self.model, "no_sync")
                    and i < len(samples) - 1
                ):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                    )
                    del loss

                logging_outputs.append(logging_output)
                sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                    if self.cuda:
                        torch.cuda.empty_cache()
                    if self.cfg.distributed_training.distributed_world_size == 1:
                        return None
                else:
                    raise e

            if self.tpu and i < len(samples) - 1:
                # tpu-comment: every XLA operation before marking step is
                # appended to the IR graph, and processing too many batches
                # before marking step can lead to OOM errors.
                # To handle gradient accumulation use case, we explicitly
                # mark step here for every forward pass without a backward pass
                import torch_xla.core.xla_model as xm

                xm.mark_step()

        if is_dummy_batch:
            if torch.is_tensor(sample_size):
                sample_size.zero_()
            else:
                sample_size *= 0.0

        if torch.is_tensor(sample_size):
            sample_size = sample_size.float()
        else:
            sample_size = float(sample_size)

        # gather logging outputs from all replicas
        if self._sync_stats():
            train_time = self._local_cumulative_training_time()
            logging_outputs, (
                sample_size,
                ooms,
                total_train_time,
            ) = self._aggregate_logging_outputs(
                logging_outputs,
                sample_size,
                ooms,
                train_time,
                ignore=is_dummy_batch,
            )
            self._cumulative_training_time = (
                total_train_time / self.data_parallel_world_size
            )

        overflow = False
        try:
            with torch.autograd.profiler.record_function("reduce-grads"):
                self.optimizer.all_reduce_grads(self.model)
                if utils.has_parameters(self.criterion):
                    self.optimizer.all_reduce_grads(self.criterion)

            with torch.autograd.profiler.record_function("multiply-grads"):
                # multiply gradients by (data_parallel_size / sample_size) since
                # DDP already normalizes by the number of data parallel workers.
                # Thus we get (sum_of_gradients / sample_size) at the end.
                if not self.cfg.optimization.use_bmuf:
                    self.optimizer.multiply_grads(
                        self.data_parallel_world_size / sample_size
                    )
                elif sample_size > 0:  # BMUF needs to check sample size
                    num = self.data_parallel_world_size if self._sync_stats() else 1
                    self.optimizer.multiply_grads(num / sample_size)

            with torch.autograd.profiler.record_function("clip-grads"):
                # clip grads
                grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)

            # check that grad norms are consistent across workers
            # on tpu check tensor is slow
            if not self.tpu:
                if (
                    not self.cfg.optimization.use_bmuf
                    and self.cfg.distributed_training.distributed_wrapper != "SlowMo"
                ):
                    self._check_grad_norms(grad_norm)
                if not torch.isfinite(grad_norm).all():
                    # check local gradnorm single GPU case, trigger NanDetector
                    raise FloatingPointError("gradients are Nan/Inf")

            with torch.autograd.profiler.record_function("optimizer"):
                # take an optimization step
                self.task.optimizer_step(
                    self.optimizer, model=self.model, update_num=self.get_num_updates()
                )

        except FloatingPointError:
            # re-run the forward and backward pass with hooks attached to print
            # out where it fails
            self.zero_grad()
            with NanDetector(self.get_model()):
                for _, sample in enumerate(samples):
                    sample, _ = self._prepare_sample(sample)
                    self.task.train_step(
                        sample,
                        self.model,
                        self.criterion,
                        self.optimizer,
                        self.get_num_updates(),
                        ignore_grad=False,
                    )
            raise
        except OverflowError as e:
            overflow = True
            logger.info("NOTE: overflow detected, " + str(e))
            grad_norm = torch.tensor(0.0).cuda()
            self.zero_grad()
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        # Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step
        if hasattr(self.model, "perform_additional_optimizer_actions"):
            if hasattr(self.optimizer, "fp32_params"):
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer, self.optimizer.fp32_params
                )
            else:
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer
                )

        logging_output = None
        if (
            not overflow
            or self.cfg.distributed_training.distributed_wrapper == "SlowMo"
        ):
            self.set_num_updates(self.get_num_updates() + 1)

            if self.tpu:
                # mark step on TPUs
                import torch_xla.core.xla_model as xm

                xm.mark_step()

                # only log stats every log_interval steps
                # this causes wps to be misreported when log_interval > 1
                logging_output = {}
                if self.get_num_updates() % self.cfg.common.log_interval == 0:
                    # log memory usage
                    mem_info = xm.get_memory_info(self.device)
                    gb_free = mem_info["kb_free"] / 1024 / 1024
                    gb_total = mem_info["kb_total"] / 1024 / 1024
                    metrics.log_scalar(
                        "gb_free",
                        gb_free,
                        priority=1500,
                        round=1,
                        weight=0,
                    )
                    metrics.log_scalar(
                        "gb_total",
                        gb_total,
                        priority=1600,
                        round=1,
                        weight=0,
                    )

                    logging_output = self._reduce_and_log_stats(
                        logging_outputs,
                        sample_size,
                        grad_norm,
                    )

                # log whenever there's an XLA compilation, since these
                # slow down training and may indicate opportunities for
                # optimization
                self._check_xla_compilation()
            else:
                # log stats
                logging_output = self._reduce_and_log_stats(
                    logging_outputs,
                    sample_size,
                    grad_norm,
                )

                # clear CUDA cache to reduce memory fragmentation
                if (
                    self.cuda
                    and self.cfg.common.empty_cache_freq > 0
                    and (
                        (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
                        % self.cfg.common.empty_cache_freq
                    )
                    == 0
                ):
                    torch.cuda.empty_cache()

        if self.cfg.common.fp16:
            metrics.log_scalar(
                "loss_scale",
                self.optimizer.scaler.loss_scale,
                priority=700,
                round=4,
                weight=0,
            )

        metrics.log_stop_time("train_wall")
        return logging_output