Example #1
0
 def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
     """
     Generate batches for inference. We assume that the input begins with a
     bos symbol (`<s>`) and ends with an eos symbol (`</s>`).
     """
     pad = self.source_dictionary.pad()
     eos = self.source_dictionary.eos()
     src_dataset = TokenBlockDataset(
         src_tokens,
         src_lengths,
         block_size=self.args.tokens_per_sample - 2,  # for <s> and </s>
         pad=pad,
         eos=eos,
         break_mode=self.args.sample_break_mode,
         document_sep_len=0,
     )
     prev_output_tokens = PrependTokenDataset(
         StripTokenDataset(src_dataset, eos), eos)
     src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False)
     return NestedDictionaryDataset(
         {
             "id": IdDataset(),
             "net_input": {
                 "src_tokens":
                 src_dataset,
                 "src_lengths":
                 NumelDataset(src_dataset, reduce=False),
                 "prev_output_tokens":
                 PadDataset(prev_output_tokens, pad_idx=pad,
                            left_pad=False),
             },
             "target": src_dataset,
         },
         sizes=[np.array(src_lengths)],
     )
Example #2
0
 def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
     src_dataset = RightPadDataset(
         TokenBlockDataset(
             src_tokens,
             src_lengths,
             self.args.tokens_per_sample - 1,  # one less for <s>
             pad=self.source_dictionary.pad(),
             eos=self.source_dictionary.eos(),
             break_mode="eos",
         ),
         pad_idx=self.source_dictionary.pad(),
     )
     src_dataset = PrependTokenDataset(src_dataset,
                                       self.source_dictionary.bos())
     src_dataset = NestedDictionaryDataset(
         {
             "id": IdDataset(),
             "net_input": {
                 "src_tokens": src_dataset,
                 "src_lengths": NumelDataset(src_dataset, reduce=False),
             },
         },
         sizes=src_lengths,
     )
     if sort:
         src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
     return src_dataset
Example #3
0
    def load_dataset(
        self, split: str, epoch=1, combine=False, **kwargs
    ) -> MonolingualDataset:
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0

        data_path = paths[(epoch - 1) % len(paths)]
        split_path = os.path.join(data_path, split)

        # each process has its own copy of the raw data (likely to be an np.memmap)
        dataset = data_utils.load_indexed_dataset(
            split_path, self.dictionary, self.args.dataset_impl, combine=combine
        )
        if dataset is None:
            raise FileNotFoundError(f"Dataset not found: {split} ({split_path})")

        dataset = maybe_shorten_dataset(
            dataset,
            split,
            self.args.shorten_data_split_list,
            self.args.shorten_method,
            self.args.tokens_per_sample,
            self.args.seed,
        )
        dataset = TokenBlockDataset(
            dataset,
            dataset.sizes,
            self.args.tokens_per_sample,
            pad=self.dictionary.pad(),
            eos=self.dictionary.eos(),
            break_mode=self.args.sample_break_mode,
            include_targets=True,
            use_plasma_view=self.args.use_plasma_view,
            split_path=split_path,
            plasma_path=self.args.plasma_path,
        )

        add_eos_for_other_targets = (
            self.args.sample_break_mode is not None
            and self.args.sample_break_mode != "none"
        )

        self.datasets[split] = MonolingualDataset(
            dataset=dataset,
            sizes=dataset.sizes,
            src_vocab=self.dictionary,
            tgt_vocab=self.output_dictionary,
            add_eos_for_other_targets=add_eos_for_other_targets,
            shuffle=True,
            targets=self.targets,
            add_bos_token=self.args.add_bos_token,
        )
Example #4
0
 def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
     """
     Generate batches for inference. We prepend an eos token to src_tokens
     (or bos if `--add-bos-token` is set) and we append a <pad> to target.
     This is convenient both for generation with a prefix and LM scoring.
     """
     dataset = StripTokenDataset(
         TokenBlockDataset(
             src_tokens,
             src_lengths,
             block_size=None,  # ignored for "eos" break mode
             pad=self.source_dictionary.pad(),
             eos=self.source_dictionary.eos(),
             break_mode="eos",
         ),
         # remove eos from (end of) target sequence
         self.source_dictionary.eos(),
     )
     src_dataset = PrependTokenDataset(
         dataset,
         token=(
             self.source_dictionary.bos()
             if getattr(self.args, "add_bos_token", False)
             else self.source_dictionary.eos()
         ),
     )
     tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad())
     return NestedDictionaryDataset(
         {
             "id": IdDataset(),
             "net_input": {
                 "src_tokens": PadDataset(
                     src_dataset,
                     pad_idx=self.source_dictionary.pad(),
                     left_pad=False,
                 ),
                 "src_lengths": NumelDataset(src_dataset, reduce=False),
             },
             "target": PadDataset(
                 tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False
             ),
         },
         sizes=[np.array(src_lengths)],
     )
Example #5
0
    def _load_single_lang_dataset(self, split, epoch):
        loaded_datasets = []

        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        for k in itertools.count():
            split_k = split + (str(k) if k > 0 else "")
            path = os.path.join(data_path, split_k)

            ds = data_utils.load_indexed_dataset(path, self.dictionary,
                                                 self.args.dataset_impl)
            if ds is None:
                if k > 0:
                    break
                else:
                    raise FileNotFoundError(
                        "Dataset not found: {} ({})".format(split, data_path))

            # Since we append each block with the classification_token,
            # we need to effectively create blocks of length
            # tokens_per_sample-1
            loaded_datasets.append(
                TokenBlockDataset(
                    ds,
                    ds.sizes,
                    self.args.tokens_per_sample - 1,
                    pad=self.dictionary.pad(),
                    eos=self.dictionary.eos(),
                ))

            logger.info("{} {} {} examples".format(data_path, split_k,
                                                   len(loaded_datasets[-1])))

        if len(loaded_datasets) == 1:
            dataset = loaded_datasets[0]
            sizes = dataset.sizes
        else:
            dataset = ConcatDataset(loaded_datasets)
            sizes = np.concatenate([ds.sizes for ds in loaded_datasets])

        return dataset, sizes
Example #6
0
    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]
        split_path = os.path.join(data_path, split)

        dataset = data_utils.load_indexed_dataset(
            split_path,
            self.dictionary,
            self.args.dataset_impl,
            combine=combine,
        )
        if dataset is None:
            raise FileNotFoundError("Dataset not found: {} ({})".format(
                split, split_path))

        dataset = StripTokenDataset(dataset, self.dictionary.eos())

        dataset = maybe_shorten_dataset(
            dataset,
            split,
            self.args.shorten_data_split_list,
            self.args.shorten_method,
            self.args.tokens_per_sample,
            self.args.seed,
        )

        # create continuous blocks of tokens
        dataset = TokenBlockDataset(
            dataset,
            dataset.sizes,
            self.args.tokens_per_sample -
            2,  # one less for <s> and one for </s>
            pad=self.dictionary.pad(),
            eos=self.dictionary.eos(),
            break_mode=self.args.sample_break_mode,
            document_sep_len=0,
        )

        # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
        dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
        dataset = AppendTokenDataset(dataset, self.source_dictionary.eos())

        mask_whole_words = (get_whole_word_mask(self.args,
                                                self.source_dictionary)
                            if self.args.mask_length != "subword" else None)

        self.datasets[split] = DenoisingDataset(
            dataset,
            dataset.sizes,
            self.dictionary,
            self.mask_idx,
            mask_whole_words,
            shuffle=self.args.shuffle_instance,
            seed=self.seed,
            args=self.args,
        )
        logger.info(
            "Split: {0}, Loaded {1} samples of denoising_dataset".format(
                split,
                len(self.datasets[split]),
            ))
Example #7
0
    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]
        split_path = os.path.join(data_path, split)

        dataset = data_utils.load_indexed_dataset(
            split_path,
            self.source_dictionary,
            self.args.dataset_impl,
            combine=combine,
        )
        if dataset is None:
            raise FileNotFoundError("Dataset not found: {} ({})".format(
                split, split_path))

        dataset = maybe_shorten_dataset(
            dataset,
            split,
            self.args.shorten_data_split_list,
            self.args.shorten_method,
            self.args.tokens_per_sample,
            self.args.seed,
        )

        # create continuous blocks of tokens
        dataset = TokenBlockDataset(
            dataset,
            dataset.sizes,
            self.args.tokens_per_sample - 1,  # one less for <s>
            pad=self.source_dictionary.pad(),
            eos=self.source_dictionary.eos(),
            break_mode=self.args.sample_break_mode,
        )
        logger.info("loaded {} blocks from: {}".format(len(dataset),
                                                       split_path))

        # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
        dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())

        # create masked input and targets
        mask_whole_words = (get_whole_word_mask(self.args,
                                                self.source_dictionary)
                            if self.args.mask_whole_words else None)

        src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
            dataset,
            self.source_dictionary,
            pad_idx=self.source_dictionary.pad(),
            mask_idx=self.mask_idx,
            seed=self.args.seed,
            mask_prob=self.args.mask_prob,
            leave_unmasked_prob=self.args.leave_unmasked_prob,
            random_token_prob=self.args.random_token_prob,
            freq_weighted_replacement=self.args.freq_weighted_replacement,
            mask_whole_words=mask_whole_words,
            mask_multiple_length=self.args.mask_multiple_length,
            mask_stdev=self.args.mask_stdev,
        )

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_dataset))

        self.datasets[split] = SortDataset(
            NestedDictionaryDataset(
                {
                    "id":
                    IdDataset(),
                    "net_input": {
                        "src_tokens":
                        RightPadDataset(
                            src_dataset,
                            pad_idx=self.source_dictionary.pad(),
                        ),
                        "src_lengths":
                        NumelDataset(src_dataset, reduce=False),
                    },
                    "target":
                    RightPadDataset(
                        tgt_dataset,
                        pad_idx=self.source_dictionary.pad(),
                    ),
                    "nsentences":
                    NumSamplesDataset(),
                    "ntokens":
                    NumelDataset(src_dataset, reduce=True),
                },
                sizes=[src_dataset.sizes],
            ),
            sort_order=[
                shuffle,
                src_dataset.sizes,
            ],
        )
    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        languages = sorted(name for name in os.listdir(data_path)
                           if os.path.isdir(os.path.join(data_path, name)))

        logger.info("Training on {0} languages: {1}".format(
            len(languages), languages))
        logger.info("Language to id mapping: ",
                    {lang: id
                     for id, lang in enumerate(languages)})

        mask_whole_words = self._get_whole_word_mask()
        lang_datasets = []
        for lang_id, language in enumerate(languages):
            split_path = os.path.join(data_path, language, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                self.source_dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            if dataset is None:
                raise FileNotFoundError("Dataset not found: {} ({})".format(
                    split, split_path))

            # create continuous blocks of tokens
            dataset = TokenBlockDataset(
                dataset,
                dataset.sizes,
                self.args.tokens_per_sample - 1,  # one less for <s>
                pad=self.source_dictionary.pad(),
                eos=self.source_dictionary.eos(),
                break_mode=self.args.sample_break_mode,
            )
            logger.info("loaded {} blocks from: {}".format(
                len(dataset), split_path))

            # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
            dataset = PrependTokenDataset(dataset,
                                          self.source_dictionary.bos())

            src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
                dataset,
                self.source_dictionary,
                pad_idx=self.source_dictionary.pad(),
                mask_idx=self.mask_idx,
                seed=self.args.seed,
                mask_prob=self.args.mask_prob,
                leave_unmasked_prob=self.args.leave_unmasked_prob,
                random_token_prob=self.args.random_token_prob,
                freq_weighted_replacement=self.args.freq_weighted_replacement,
                mask_whole_words=mask_whole_words,
            )

            lang_dataset = NestedDictionaryDataset(
                {
                    "net_input": {
                        "src_tokens":
                        PadDataset(
                            src_dataset,
                            pad_idx=self.source_dictionary.pad(),
                            left_pad=False,
                        ),
                        "src_lengths":
                        NumelDataset(src_dataset, reduce=False),
                    },
                    "target":
                    PadDataset(
                        tgt_dataset,
                        pad_idx=self.source_dictionary.pad(),
                        left_pad=False,
                    ),
                    "nsentences":
                    NumSamplesDataset(),
                    "ntokens":
                    NumelDataset(src_dataset, reduce=True),
                    "lang_id":
                    RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]),
                },
                sizes=[src_dataset.sizes],
            )
            lang_datasets.append(lang_dataset)

        dataset_lengths = np.array(
            [len(d) for d in lang_datasets],
            dtype=float,
        )
        logger.info("loaded total {} blocks for all languages".format(
            dataset_lengths.sum(), ))
        if split == self.args.train_subset:
            # For train subset, additionally up or down sample languages.
            sample_probs = self._get_sample_prob(dataset_lengths)
            logger.info(
                "Sample probability by language: ",
                {
                    lang: "{0:.4f}".format(sample_probs[id])
                    for id, lang in enumerate(languages)
                },
            )
            size_ratio = (sample_probs *
                          dataset_lengths.sum()) / dataset_lengths
            logger.info(
                "Up/Down Sampling ratio by language: ",
                {
                    lang: "{0:.2f}".format(size_ratio[id])
                    for id, lang in enumerate(languages)
                },
            )

            resampled_lang_datasets = [
                ResamplingDataset(
                    lang_datasets[i],
                    size_ratio=size_ratio[i],
                    seed=self.args.seed,
                    epoch=epoch,
                    replace=size_ratio[i] >= 1.0,
                ) for i, d in enumerate(lang_datasets)
            ]
            dataset = ConcatDataset(resampled_lang_datasets)
        else:
            dataset = ConcatDataset(lang_datasets)
            lang_splits = [split]
            for lang_id, lang_dataset in enumerate(lang_datasets):
                split_name = split + "_" + languages[lang_id]
                lang_splits.append(split_name)
                self.datasets[split_name] = lang_dataset

            # [TODO]: This is hacky for now to print validation ppl for each
            # language individually. Maybe need task API changes to allow it
            # in more generic ways.
            if split in self.args.valid_subset:
                self.args.valid_subset = self.args.valid_subset.replace(
                    split, ",".join(lang_splits))

        with data_utils.numpy_seed(self.args.seed + epoch):
            shuffle = np.random.permutation(len(dataset))

        self.datasets[split] = SortDataset(
            dataset,
            sort_order=[
                shuffle,
                dataset.sizes,
            ],
        )