Example #1
0
def cli_main():
    parser = options.get_validation_parser()
    args = options.parse_args_and_arch(parser)

    # only override args that are explicitly given on the command line
    override_parser = options.get_validation_parser()
    override_args = options.parse_args_and_arch(override_parser,
                                                suppress_defaults=True)

    distributed_utils.call_main(convert_namespace_to_omegaconf(args),
                                main,
                                override_args=override_args)
Example #2
0
def cli_main(
    modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser, modify_parser=modify_parser)

    cfg = convert_namespace_to_omegaconf(args)

    if cfg.common.use_plasma_view:
        server = PlasmaStore(path=cfg.common.plasma_path)
        logger.info(
            f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}"
        )

    if args.profile:
        with torch.cuda.profiler.profile():
            with torch.autograd.profiler.emit_nvtx():
                distributed_utils.call_main(cfg, main)
    else:
        distributed_utils.call_main(cfg, main)
Example #3
0
def main(cfg: object) -> object:
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    assert cfg.common_eval.path is not None, "--path required for generation!"
    assert (not cfg.generation.sampling
            or cfg.generation.nbest == cfg.generation.beam
            ), "--sampling requires --nbest to be equal to --beam"
    assert (cfg.generation.replace_unk is None
            or cfg.dataset.dataset_impl == "raw"
            ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"

    if cfg.common_eval.results_path is not None:
        os.makedirs(cfg.common_eval.results_path, exist_ok=True)
        output_path = os.path.join(
            cfg.common_eval.results_path,
            "generate-{}.txt".format(cfg.dataset.gen_subset),
        )
        with open(output_path, "w", buffering=1, encoding="utf-8") as h:
            return _main(cfg, h)
    else:
        return _main(cfg, sys.stdout)
Example #4
0
    def load_state_dict(
        self,
        state_dict,
        strict=True,
        model_cfg=None,
        args: Optional[Namespace] = None,
    ):
        """Copies parameters and buffers from *state_dict* into this module and
        its descendants.

        Overrides the method in :class:`nn.Module`. Compared with that method
        this additionally "upgrades" *state_dicts* from old checkpoints.
        """

        if model_cfg is None and args is not None:
            logger.warn("using 'args' is deprecated, please update your code to use dataclass config")
            model_cfg = convert_namespace_to_omegaconf(args).model

        self.upgrade_state_dict(state_dict)

        from fairseq_stchde.checkpoint_utils import prune_state_dict

        new_state_dict = prune_state_dict(state_dict, model_cfg)
        return super().load_state_dict(new_state_dict, strict)
Example #5
0
def main(cfg: FairseqConfig) -> None:
    if isinstance(cfg, argparse.Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    if distributed_utils.is_master(
            cfg.distributed_training) and "job_logging_cfg" in cfg:
        # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
        logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))

    assert (
        cfg.dataset.max_tokens is not None
        or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"
    metrics.reset()

    np.random.seed(cfg.common.seed)
    utils.set_torch_seed(cfg.common.seed)

    if distributed_utils.is_master(cfg.distributed_training):
        checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)

    # Print args
    logger.info(cfg)

    if cfg.checkpoint.write_checkpoints_asynchronously:
        try:
            import iopath  # noqa: F401
        except ImportError:
            logging.exception(
                "Asynchronous checkpoint writing is specified but iopath is "
                "not installed: `pip install iopath`")
            return

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(cfg.task)
    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in cfg.dataset.valid_subset.split(","):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    assert cfg.criterion, "Please specify criterion to train a model"

    # Build model and criterion
    if cfg.distributed_training.ddp_backend == "fully_sharded":
        with fsdp_enable_wrap(cfg.distributed_training):
            model = fsdp_wrap(task.build_model(cfg.model))
    else:
        model = task.build_model(cfg.model)
    criterion = task.build_criterion(cfg.criterion)
    logger.info(model)
    logger.info("task: {}".format(task.__class__.__name__))
    logger.info("model: {}".format(model.__class__.__name__))
    logger.info("criterion: {}".format(criterion.__class__.__name__))
    logger.info("num. model params: {:,} (num. trained: {:,})".format(
        sum(getattr(p, "_orig_size", p).numel() for p in model.parameters()),
        sum(
            getattr(p, "_orig_size", p).numel() for p in model.parameters()
            if p.requires_grad),
    ))

    # (optionally) Configure quantization
    if cfg.common.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=cfg.common.quantization_config_path,
            max_epoch=cfg.optimization.max_epoch,
            max_update=cfg.optimization.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if cfg.common.model_parallel_size == 1:
        trainer = Trainer(cfg, task, model, criterion, quantizer)
    else:
        trainer = MegatronTrainer(cfg, task, model, criterion)
    logger.info("training on {} devices (GPUs/TPUs)".format(
        cfg.distributed_training.distributed_world_size))
    logger.info("max tokens per GPU = {} and batch size per GPU = {}".format(
        cfg.dataset.max_tokens,
        cfg.dataset.batch_size,
    ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
        cfg.checkpoint,
        trainer,
        # don't cache epoch iterators for sharded datasets
        disable_iterator_cache=task.has_sharded_data("train"),
    )

    max_epoch = cfg.optimization.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()
    while epoch_itr.next_epoch_idx <= max_epoch:
        if lr <= cfg.optimization.stop_min_lr:
            logger.info(
                f"stopping training because current learning rate ({lr}) is smaller "
                "than or equal to minimum learning rate "
                f"(--stop-min-lr={cfg.optimization.stop_min_lr})")
            break

        # train for one epoch
        valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=task.has_sharded_data("train"),
            # don't cache epoch iterators for sharded datasets
            disable_iterator_cache=task.has_sharded_data("train"),
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))

    # ioPath implementation to wait for all asynchronous file writes to complete.
    if cfg.checkpoint.write_checkpoints_asynchronously:
        logger.info(
            "ioPath PathManager waiting for all asynchronous checkpoint "
            "writes to finish.")
        PathManager.async_close()
        logger.info("ioPath PathManager finished waiting.")
Example #6
0
def distributed_init(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        from fairseq_stchde.dataclass.utils import convert_namespace_to_omegaconf

        cfg = convert_namespace_to_omegaconf(cfg)

    if not cfg.common.tpu:
        if torch.distributed.is_available() and torch.distributed.is_initialized():
            warnings.warn(
                "Distributed is already initialized, cannot initialize twice!"
            )
        else:
            logger.info(
                "distributed init (rank {}): {}".format(
                    cfg.distributed_training.distributed_rank,
                    cfg.distributed_training.distributed_init_method,
                )
            )
            dist.init_process_group(
                backend=cfg.distributed_training.distributed_backend,
                init_method=cfg.distributed_training.distributed_init_method,
                world_size=cfg.distributed_training.distributed_world_size,
                rank=cfg.distributed_training.distributed_rank,
            )
            logger.info(
                "initialized host {} as rank {}".format(
                    socket.gethostname(),
                    cfg.distributed_training.distributed_rank,
                )
            )

            # perform a dummy all-reduce to initialize the NCCL communicator
            if torch.cuda.is_available():
                dist.all_reduce(torch.zeros(1).cuda())

        cfg.distributed_training.distributed_rank = torch.distributed.get_rank()
    else:
        assert xm.xrt_world_size() == cfg.distributed_training.distributed_world_size
        global _USE_XLA
        _USE_XLA = True
        cfg.distributed_training.device_id = xm.get_local_ordinal()
        cfg.distributed_training.distributed_rank = xm.get_ordinal()
        xm.rendezvous("distributed_init")  # wait for all workers
        xm.mark_step()

    if is_master(cfg.distributed_training):
        logging.getLogger().setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(logging.WARNING)

    if cfg.common.model_parallel_size > 1:
        try:
            from fairseq_stchde.model_parallel.megatron.mpu import (
                initialize_model_parallel,
                model_parallel_cuda_manual_seed,
            )
        except ImportError:
            raise ImportError(
                "\n\nPlease install the megatron submodule:"
                "\n\n  git submodule update --init "
                "fairseq/model_parallel/megatron"
            )
        global _USE_MEGATRON
        _USE_MEGATRON = True
        initialize_model_parallel(cfg.common.model_parallel_size)
        model_parallel_cuda_manual_seed(cfg.common.seed)
        model_part_number = get_model_parallel_rank()
        cfg.checkpoint.checkpoint_suffix += "-model_part-{0}".format(model_part_number)

    return cfg.distributed_training.distributed_rank
Example #7
0
    def __init__(self, cfg: Wav2Vec2AsrConfig, tgt_dict=None):
        self.apply_mask = cfg.apply_mask

        arg_overrides = {
            "dropout": cfg.dropout,
            "activation_dropout": cfg.activation_dropout,
            "dropout_input": cfg.dropout_input,
            "attention_dropout": cfg.attention_dropout,
            "mask_length": cfg.mask_length,
            "mask_prob": cfg.mask_prob,
            "mask_selection": cfg.mask_selection,
            "mask_other": cfg.mask_other,
            "no_mask_overlap": cfg.no_mask_overlap,
            "mask_channel_length": cfg.mask_channel_length,
            "mask_channel_prob": cfg.mask_channel_prob,
            "mask_channel_selection": cfg.mask_channel_selection,
            "mask_channel_other": cfg.mask_channel_other,
            "no_mask_channel_overlap": cfg.no_mask_channel_overlap,
            "encoder_layerdrop": cfg.layerdrop,
            "feature_grad_mult": cfg.feature_grad_mult,
        }

        if cfg.w2v_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(
                cfg.w2v_path, arg_overrides)
            w2v_args = state.get("cfg", None)
            if w2v_args is None:
                w2v_args = convert_namespace_to_omegaconf(state["args"])
            cfg.w2v_args = w2v_args
        else:
            state = None
            w2v_args = cfg.w2v_args
            if isinstance(w2v_args, Namespace):
                cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(
                    w2v_args)

        assert cfg.normalize == w2v_args.task.normalize, (
            "Fine-tuning works best when data normalization is the same. "
            "Please check that --normalize is set or unset for both pre-training and here"
        )

        w2v_args.task.data = cfg.data
        task = tasks.setup_task(w2v_args.task)
        model = task.build_model(w2v_args.model)

        if state is not None and not cfg.no_pretrained_weights:
            model.load_state_dict(state["model"], strict=True)

        model.remove_pretraining_modules()

        super().__init__(task.source_dictionary)

        d = w2v_args.model.encoder_embed_dim

        self.w2v_model = model

        self.final_dropout = nn.Dropout(cfg.final_dropout)
        self.freeze_finetune_updates = cfg.freeze_finetune_updates
        self.num_updates = 0

        if tgt_dict is not None:
            self.proj = Linear(d, len(tgt_dict))
        elif getattr(cfg, "decoder_embed_dim", d) != d:
            self.proj = Linear(d, cfg.decoder_embed_dim)
        else:
            self.proj = None
Example #8
0
def main(cfg: DictConfig, override_args=None):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    assert (
        cfg.dataset.max_tokens is not None
        or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"

    use_fp16 = cfg.common.fp16
    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    if use_cuda:
        torch.cuda.set_device(cfg.distributed_training.device_id)

    if cfg.distributed_training.distributed_world_size > 1:
        data_parallel_world_size = distributed_utils.get_data_parallel_world_size(
        )
        data_parallel_rank = distributed_utils.get_data_parallel_rank()
    else:
        data_parallel_world_size = 1
        data_parallel_rank = 0

    if override_args is not None:
        overrides = vars(override_args)
        overrides.update(eval(getattr(override_args, "model_overrides", "{}")))
    else:
        overrides = None

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
        [cfg.common_eval.path],
        arg_overrides=overrides,
        suffix=cfg.checkpoint.checkpoint_suffix,
    )
    model = models[0]

    # Move models to GPU
    for model in models:
        if use_fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Print args
    logger.info(saved_cfg)

    # Build criterion
    criterion = task.build_criterion(saved_cfg.criterion)
    criterion.eval()

    for subset in cfg.dataset.valid_subset.split(","):
        try:
            task.load_dataset(subset,
                              combine=False,
                              epoch=1,
                              task_cfg=saved_cfg.task)
            dataset = task.dataset(subset)
        except KeyError:
            raise Exception("Cannot find dataset: " + subset)

        # Initialize data iterator
        itr = task.get_batch_iterator(
            dataset=dataset,
            max_tokens=cfg.dataset.max_tokens,
            max_sentences=cfg.dataset.batch_size,
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                *[m.max_positions() for m in models],
            ),
            ignore_invalid_inputs=cfg.dataset.
            skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=cfg.dataset.
            required_batch_size_multiple,
            seed=cfg.common.seed,
            num_shards=data_parallel_world_size,
            shard_id=data_parallel_rank,
            num_workers=cfg.dataset.num_workers,
            data_buffer_size=cfg.dataset.data_buffer_size,
        ).next_epoch_itr(shuffle=False)
        progress = progress_bar.progress_bar(
            itr,
            log_format=cfg.common.log_format,
            log_interval=cfg.common.log_interval,
            prefix=f"valid on '{subset}' subset",
            default_log_format=("tqdm" if not cfg.common.no_progress_bar else
                                "simple"),
        )

        log_outputs = []
        for i, sample in enumerate(progress):
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            _loss, _sample_size, log_output = task.valid_step(
                sample, model, criterion)
            progress.log(log_output, step=i)
            log_outputs.append(log_output)

        if data_parallel_world_size > 1:
            log_outputs = distributed_utils.all_gather_list(
                log_outputs,
                max_size=cfg.common.all_gather_list_size,
                group=distributed_utils.get_data_parallel_group(),
            )
            log_outputs = list(chain.from_iterable(log_outputs))

        with metrics.aggregate() as agg:
            task.reduce_metrics(log_outputs, criterion)
            log_output = agg.get_smoothed_values()

        progress.print(log_output, tag=subset, step=i)
Example #9
0
def cli_main():
    parser = options.get_interactive_generation_parser()
    args = options.parse_args_and_arch(parser)
    distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)
Example #10
0
def main(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(cfg.common)

    if cfg.interactive.buffer_size < 1:
        cfg.interactive.buffer_size = 1
    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.batch_size = 1

    assert (
        not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        not cfg.dataset.batch_size
        or cfg.dataset.batch_size <= cfg.interactive.buffer_size
    ), "--batch-size cannot be larger than --buffer-size"

    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    overrides = ast.literal_eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Initialize generator
    generator = task.build_generator(models, cfg.generation)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]
    )

    if cfg.generation.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if cfg.interactive.buffer_size > 1:
        logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info("Type the input sentence and press return:")
    start_id = 0
    for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size):
        results = []
        for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                "net_input": {
                    "src_tokens": src_tokens,
                    "src_lengths": src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(
                generator, models, sample, constraints=constraints
            )
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if cfg.generation.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append(
                    (
                        start_id + id,
                        src_tokens_i,
                        hypos,
                        {
                            "constraints": constraints,
                            "time": translate_time / len(translations),
                        },
                    )
                )

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
            src_str = ''
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
                print("S-{}\t{}".format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print(
                        "C-{}\t{}".format(
                            id_, tgt_dict.string(constraint, cfg.common_eval.post_process)
                        )
                    )

            # Process top predictions
            for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo["score"] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print("H-{}\t{}\t{}".format(id_, score, hypo_str))
                # detokenized hypothesis
                print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
                print(
                    "P-{}\t{}".format(
                        id_,
                        " ".join(
                            map(
                                lambda x: "{:.4f}".format(x),
                                # convert from base e to base 2
                                hypo["positional_scores"].div_(math.log(2)).tolist(),
                            )
                        ),
                    )
                )
                if cfg.generation.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment]
                    )
                    print("A-{}\t{}".format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info(
        "Total time: {:.3f} seconds; translation time: {:.3f}".format(
            time.time() - start_time, total_translate_time
        )
    )