def _evaluate(self, Gs, num_gpus): minibatch_size = num_gpus * self.minibatch_per_gpu # Construct TensorFlow graph for each GPU. result_expr = [] for gpu_idx in range(num_gpus): with tf.device('/gpu:%d' % gpu_idx): Gs_clone = Gs.clone() # Generate images. latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:]) dlatents = Gs_clone.components.mapping.get_output_for(latents, None, is_validation=True) images = Gs_clone.components.synthesis.get_output_for(dlatents, is_validation=True, randomize_noise=True) # Downsample to 256x256. The attribute classifiers were built for 256x256. if images.shape[2] > 256: factor = images.shape[2] // 256 images = tf.reshape(images, [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor]) images = tf.reduce_mean(images, axis=[3, 5]) # Run classifier for each attribute. result_dict = dict(latents=latents, dlatents=dlatents[:,-1]) for attrib_idx in self.attrib_indices: classifier = misc.load_pkl(classifier_urls[attrib_idx]) logits = classifier.get_output_for(images, None) predictions = tf.nn.softmax(tf.concat([logits, -logits], axis=1)) result_dict[attrib_idx] = predictions result_expr.append(result_dict) # Sampling loop. results = [] for _ in range(0, self.num_samples, minibatch_size): results += tflib.run(result_expr) results = {key: np.concatenate([value[key] for value in results], axis=0) for key in results[0].keys()} # Calculate conditional entropy for each attribute. conditional_entropies = defaultdict(list) for attrib_idx in self.attrib_indices: # Prune the least confident samples. pruned_indices = list(range(self.num_samples)) pruned_indices = sorted(pruned_indices, key=lambda i: -np.max(results[attrib_idx][i])) pruned_indices = pruned_indices[:self.num_keep] # Fit SVM to the remaining samples. svm_targets = np.argmax(results[attrib_idx][pruned_indices], axis=1) for space in ['latents', 'dlatents']: svm_inputs = results[space][pruned_indices] try: svm = sklearn.svm.LinearSVC() svm.fit(svm_inputs, svm_targets) svm.score(svm_inputs, svm_targets) svm_outputs = svm.predict(svm_inputs) except: svm_outputs = svm_targets # assume perfect prediction # Calculate conditional entropy. p = [[np.mean([case == (row, col) for case in zip(svm_outputs, svm_targets)]) for col in (0, 1)] for row in (0, 1)] conditional_entropies[space].append(conditional_entropy(p))
def _evaluate(self, Gs, num_gpus): minibatch_size = num_gpus * self.minibatch_per_gpu inception = misc.load_pkl( 'https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn' ) # inception_v3_features.pkl activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32) # Calculate statistics for reals. cache_file = self._get_cache_file_for_reals(num_images=self.num_images) os.makedirs(os.path.dirname(cache_file), exist_ok=True) if os.path.isfile(cache_file): mu_real, sigma_real = misc.load_pkl(cache_file) else: for idx, images in enumerate( self._iterate_reals(minibatch_size=minibatch_size)): begin = idx * minibatch_size end = min(begin + minibatch_size, self.num_images) activations[begin:end] = inception.run(images[:end - begin], num_gpus=num_gpus, assume_frozen=True) if end == self.num_images: break mu_real = np.mean(activations, axis=0) sigma_real = np.cov(activations, rowvar=False) misc.save_pkl((mu_real, sigma_real), cache_file) # Construct TensorFlow graph. result_expr = [] for gpu_idx in range(num_gpus): with tf.device('/gpu:%d' % gpu_idx): Gs_clone = Gs.clone() inception_clone = inception.clone() latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:]) images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True) images = tflib.convert_images_to_uint8(images) result_expr.append(inception_clone.get_output_for(images)) # Calculate statistics for fakes. for begin in range(0, self.num_images, minibatch_size): end = min(begin + minibatch_size, self.num_images) activations[begin:end] = np.concatenate(tflib.run(result_expr), axis=0)[:end - begin] mu_fake = np.mean(activations, axis=0) sigma_fake = np.cov(activations, rowvar=False) # Calculate FID. m = np.square(mu_fake - mu_real).sum() s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member dist = m + np.trace(sigma_fake + sigma_real - 2 * s) self._report_result(np.real(dist))
def draw_noise_components_figure(png, Gs, w, h, seeds, noise_ranges, flips): print(png) Gsc = Gs.clone() noise_vars = [ var for name, var in Gsc.components.synthesis.vars.items() if name.startswith('noise') ] noise_pairs = list(zip(noise_vars, tflib.run(noise_vars))) # [(var, val), ...] latents = np.stack( np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in seeds) all_images = [] for noise_range in noise_ranges: tflib.set_vars({ var: val * (1 if i in noise_range else 0) for i, (var, val) in enumerate(noise_pairs) }) range_images = Gsc.run(latents, None, truncation_psi=1, randomize_noise=False, **synthesis_kwargs) range_images[flips, :, :] = range_images[flips, :, ::-1] all_images.append(list(range_images)) canvas = PIL.Image.new('RGB', (w * 2, h * 2), 'white') for col, col_images in enumerate(zip(*all_images)): canvas.paste( PIL.Image.fromarray(col_images[0], 'RGB').crop((0, 0, w // 2, h)), (col * w, 0)) canvas.paste( PIL.Image.fromarray(col_images[1], 'RGB').crop((w // 2, 0, w, h)), (col * w + w // 2, 0)) canvas.paste( PIL.Image.fromarray(col_images[2], 'RGB').crop((0, 0, w // 2, h)), (col * w, h)) canvas.paste( PIL.Image.fromarray(col_images[3], 'RGB').crop((w // 2, 0, w, h)), (col * w + w // 2, h)) canvas.save(png)
def training_loop( submit_config, G_args={}, # Options for generator network. D_args={}, # Options for discriminator network. G_opt_args={}, # Options for generator optimizer. D_opt_args={}, # Options for discriminator optimizer. G_loss_args={}, # Options for generator loss. D_loss_args={}, # Options for discriminator loss. dataset_args={}, # Options for dataset.load_dataset(). sched_args={}, # Options for train.TrainingSchedule. grid_args={}, # Options for train.setup_snapshot_image_grid(). metric_arg_list=[], # Options for MetricGroup. tf_config={}, # Options for tflib.init_tf(). G_smoothing_kimg=10.0, # Half-life of the running average of generator weights. D_repeats=1, # How many times the discriminator is trained per G iteration. minibatch_repeats=4, # Number of minibatches to run before adjusting training parameters. reset_opt_for_new_lod=True, # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced? total_kimg=15000, # Total length of the training, measured in thousands of real images. mirror_augment=False, # Enable mirror augment? drange_net=[ -1, 1 ], # Dynamic range used when feeding image data to the networks. image_snapshot_ticks=1, # How often to export image snapshots? network_snapshot_ticks=10, # How often to export network snapshots? save_tf_graph=False, # Include full TensorFlow computation graph in the tfevents file? save_weight_histograms=False, # Include weight histograms in the tfevents file? resume_run_id='latest', # Run ID or network pkl to resume training from, None = start from scratch. resume_snapshot=None, # Snapshot index to resume training from, None = autodetect. resume_kimg=0.0, # Assumed training progress at the beginning. Affects reporting and training schedule. resume_time=0.0 ): # Assumed wallclock time at the beginning. Affects reporting. # Initialize dnnlib and TensorFlow. ctx = dnnlib.RunContext(submit_config, train) tflib.init_tf(tf_config) # Load training set. training_set = dataset.load_dataset(data_dir=config.data_dir, verbose=True, **dataset_args) # Construct networks. with tf.device('/gpu:0'): # Load pre-trained if resume_run_id is not None: if resume_run_id == 'latest': network_pkl, resume_kimg = misc.locate_latest_pkl() print('Loading networks from "%s"...' % network_pkl) G, D, Gs = misc.load_pkl(network_pkl) elif resume_run_id == 'restore_partial': print('Restore partially...') # Initialize networks G = tflib.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **G_args) D = tflib.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **D_args) Gs = G.clone('Gs') # Load pre-trained networks assert restore_partial_fn != None G_partial, D_partial, Gs_partial = pickle.load( open(restore_partial_fn, 'rb')) # Restore (subset of) pre-trained weights # (only parameters that match both name and shape) G.copy_compatible_trainables_from(G_partial) D.copy_compatible_trainables_from(D_partial) Gs.copy_compatible_trainables_from(Gs_partial) else: network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot) print('Loading networks from "%s"...' % network_pkl) G, D, Gs = misc.load_pkl(network_pkl) # Start from scratch else: print('Constructing networks...') G = tflib.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **G_args) D = tflib.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **D_args) Gs = G.clone('Gs') G.print_layers() D.print_layers() print('Building TensorFlow graph...') with tf.name_scope('Inputs'), tf.device('/cpu:0'): lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[]) lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[]) minibatch_in = tf.placeholder(tf.int32, name='minibatch_in', shape=[]) minibatch_split = minibatch_in // submit_config.num_gpus Gs_beta = 0.5**tf.div(tf.cast(minibatch_in, tf.float32), G_smoothing_kimg * 1000.0) if G_smoothing_kimg > 0.0 else 0.0 G_opt = tflib.Optimizer(name='TrainG', learning_rate=lrate_in, **G_opt_args) D_opt = tflib.Optimizer(name='TrainD', learning_rate=lrate_in, **D_opt_args) for gpu in range(submit_config.num_gpus): with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu): G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow') D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow') lod_assign_ops = [ tf.assign(G_gpu.find_var('lod'), lod_in), tf.assign(D_gpu.find_var('lod'), lod_in) ] reals, labels = training_set.get_minibatch_tf() reals = process_reals(reals, lod_in, mirror_augment, training_set.dynamic_range, drange_net) with tf.name_scope('G_loss'), tf.control_dependencies( lod_assign_ops): G_loss = dnnlib.util.call_func_by_name( G=G_gpu, D=D_gpu, opt=G_opt, training_set=training_set, minibatch_size=minibatch_split, **G_loss_args) with tf.name_scope('D_loss'), tf.control_dependencies( lod_assign_ops): D_loss = dnnlib.util.call_func_by_name( G=G_gpu, D=D_gpu, opt=D_opt, training_set=training_set, minibatch_size=minibatch_split, reals=reals, labels=labels, **D_loss_args) G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables) D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables) G_train_op = G_opt.apply_updates() D_train_op = D_opt.apply_updates() Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta) with tf.device('/gpu:0'): try: peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse() except tf.errors.NotFoundError: peak_gpu_mem_op = tf.constant(0) print('Setting up snapshot image grid...') grid_size, grid_reals, grid_labels, grid_latents = misc.setup_snapshot_image_grid( G, training_set, **grid_args) sched = training_schedule(cur_nimg=total_kimg * 1000, training_set=training_set, num_gpus=submit_config.num_gpus, **sched_args) grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch // submit_config.num_gpus) print('Setting up run dir...') misc.save_image_grid(grid_reals, os.path.join(submit_config.run_dir, 'reals.png'), drange=training_set.dynamic_range, grid_size=grid_size) misc.save_image_grid(grid_fakes, os.path.join(submit_config.run_dir, 'fakes%06d.png' % resume_kimg), drange=drange_net, grid_size=grid_size) summary_log = tf.summary.FileWriter(submit_config.run_dir) if save_tf_graph: summary_log.add_graph(tf.get_default_graph()) if save_weight_histograms: G.setup_weight_histograms() D.setup_weight_histograms() metrics = metric_base.MetricGroup(metric_arg_list) print('Training...\n') ctx.update('', cur_epoch=resume_kimg, max_epoch=total_kimg) maintenance_time = ctx.get_last_update_interval() cur_nimg = int(resume_kimg * 1000) cur_tick = 0 tick_start_nimg = cur_nimg prev_lod = -1.0 while cur_nimg < total_kimg * 1000: if ctx.should_stop(): break # Choose training parameters and configure training ops. sched = training_schedule(cur_nimg=cur_nimg, training_set=training_set, num_gpus=submit_config.num_gpus, **sched_args) training_set.configure(sched.minibatch // submit_config.num_gpus, sched.lod) if reset_opt_for_new_lod: if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil( sched.lod) != np.ceil(prev_lod): G_opt.reset_optimizer_state() D_opt.reset_optimizer_state() prev_lod = sched.lod # Run training ops. for _mb_repeat in range(minibatch_repeats): for _D_repeat in range(D_repeats): tflib.run( [D_train_op, Gs_update_op], { lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch }) cur_nimg += sched.minibatch tflib.run( [G_train_op], { lod_in: sched.lod, lrate_in: sched.G_lrate, minibatch_in: sched.minibatch }) # Perform maintenance tasks once per tick. done = (cur_nimg >= total_kimg * 1000) if cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done: cur_tick += 1 tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0 tick_start_nimg = cur_nimg tick_time = ctx.get_time_since_last_update() total_time = ctx.get_time_since_start() + resume_time # Report progress. print( 'tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %-4.1f' % (autosummary('Progress/tick', cur_tick), autosummary('Progress/kimg', cur_nimg / 1000.0), autosummary('Progress/lod', sched.lod), autosummary('Progress/minibatch', sched.minibatch), dnnlib.util.format_time( autosummary('Timing/total_sec', total_time)), autosummary('Timing/sec_per_tick', tick_time), autosummary('Timing/sec_per_kimg', tick_time / tick_kimg), autosummary('Timing/maintenance_sec', maintenance_time), autosummary('Resources/peak_gpu_mem_gb', peak_gpu_mem_op.eval() / 2**30))) autosummary('Timing/total_hours', total_time / (60.0 * 60.0)) autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0)) # Save snapshots. if cur_tick % image_snapshot_ticks == 0 or done: grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch // submit_config.num_gpus) misc.save_image_grid(grid_fakes, os.path.join( submit_config.run_dir, 'fakes%06d.png' % (cur_nimg // 1000)), drange=drange_net, grid_size=grid_size) if cur_tick % network_snapshot_ticks == 0 or done or cur_tick == 1: pkl = os.path.join( submit_config.run_dir, 'network-snapshot-%06d.pkl' % (cur_nimg // 1000)) misc.save_pkl((G, D, Gs), pkl) metrics.run(pkl, run_dir=submit_config.run_dir, num_gpus=submit_config.num_gpus, tf_config=tf_config) # Update summaries and RunContext. metrics.update_autosummaries() tflib.autosummary.save_summaries(summary_log, cur_nimg) ctx.update('%.2f' % sched.lod, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg) maintenance_time = ctx.get_last_update_interval() - tick_time # Write final results. misc.save_pkl((G, D, Gs), os.path.join(submit_config.run_dir, 'network-final.pkl')) summary_log.close() ctx.close()
def _evaluate(self, Gs, num_gpus): minibatch_size = num_gpus * self.minibatch_per_gpu # Construct TensorFlow graph. distance_expr = [] for gpu_idx in range(num_gpus): with tf.device('/gpu:%d' % gpu_idx): Gs_clone = Gs.clone() noise_vars = [ var for name, var in Gs_clone.components.synthesis.vars.items() if name.startswith('noise') ] # Generate random latents and interpolation t-values. lat_t01 = tf.random_normal([self.minibatch_per_gpu * 2] + Gs_clone.input_shape[1:]) lerp_t = tf.random_uniform( [self.minibatch_per_gpu], 0.0, 1.0 if self.sampling == 'full' else 0.0) # Interpolate in W or Z. if self.space == 'w': dlat_t01 = Gs_clone.components.mapping.get_output_for( lat_t01, None, is_validation=True) dlat_t0, dlat_t1 = dlat_t01[0::2], dlat_t01[1::2] dlat_e0 = tflib.lerp(dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis]) dlat_e1 = tflib.lerp( dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis] + self.epsilon) dlat_e01 = tf.reshape(tf.stack([dlat_e0, dlat_e1], axis=1), dlat_t01.shape) else: # space == 'z' lat_t0, lat_t1 = lat_t01[0::2], lat_t01[1::2] lat_e0 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis]) lat_e1 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis] + self.epsilon) lat_e01 = tf.reshape(tf.stack([lat_e0, lat_e1], axis=1), lat_t01.shape) dlat_e01 = Gs_clone.components.mapping.get_output_for( lat_e01, None, is_validation=True) # Synthesize images. with tf.control_dependencies([ var.initializer for var in noise_vars ]): # use same noise inputs for the entire minibatch images = Gs_clone.components.synthesis.get_output_for( dlat_e01, is_validation=True, randomize_noise=False) # Crop only the face region. c = int(images.shape[2] // 8) images = images[:, :, c * 3:c * 7, c * 2:c * 6] # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images. if images.shape[2] > 256: factor = images.shape[2] // 256 images = tf.reshape(images, [ -1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor ]) images = tf.reduce_mean(images, axis=[3, 5]) # Scale dynamic range from [-1,1] to [0,255] for VGG. images = (images + 1) * (255 / 2) # Evaluate perceptual distance. img_e0, img_e1 = images[0::2], images[1::2] distance_measure = misc.load_pkl( 'https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2' ) # vgg16_zhang_perceptual.pkl distance_expr.append( distance_measure.get_output_for(img_e0, img_e1) * (1 / self.epsilon**2)) # Sampling loop. all_distances = [] for _ in range(0, self.num_samples, minibatch_size): all_distances += tflib.run(distance_expr) all_distances = np.concatenate(all_distances, axis=0) # Reject outliers. lo = np.percentile(all_distances, 1, interpolation='lower') hi = np.percentile(all_distances, 99, interpolation='higher') filtered_distances = np.extract( np.logical_and(lo <= all_distances, all_distances <= hi), all_distances) self._report_result(np.mean(filtered_distances))
def get_random_labels_np(self, minibatch_size): # => labels self.configure(minibatch_size) if self._tf_labels_np is None: self._tf_labels_np = self.get_random_labels_tf(minibatch_size) return tflib.run(self._tf_labels_np)
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels self.configure(minibatch_size, lod) if self._tf_minibatch_np is None: self._tf_minibatch_np = self.get_minibatch_tf() return tflib.run(self._tf_minibatch_np)