Example #1
0
  def test_insert_group(self):
    ws = Workspace()
    ws.InsertElements((5, 6))
    gp = SAnchored.Create(ws.elements[:])
    self.assertEqual((0, 1), gp.Span())
    self.assertEqual((5, 6), gp.Structure())

    ws.InsertGroup(gp)
    self.assertEqual(1, len(ws.groups))
Example #2
0
  def test_sanity(self):
    ws = Workspace()
    self.assertEqual(0, ws.num_elements)

    ws.InsertElement(SObject.Create([5]))
    self.assertEqual(1, ws.num_elements)
    self.assertEqual(5, ws.elements[0].object.magnitude)

    ws.InsertElements((6, 7))
    self.assertEqual(6, ws.elements[1].object.magnitude)
    self.assertEqual((1, 1), ws.elements[1].Span())
    self.assertEqual(3, ws.num_elements)
Example #3
0
  def test_conflicting_groups_more_complex(self):
    ws = Workspace()
    ws.InsertElements(range(0, 10))
    helper_create_and_insert_groups(ws, ((1, 2, 3), (4, 5, 6), (7, 8)))
    self.assertEqual(4, len(ws.groups))

    # An overlapping group not subsumed is fine:
    self.assertFalse(
        tuple(ws.GetConflictingGroups(
                  helper_create_group_given_spans_of_items(ws, 0, (1, 3), 4))))
    self.assertFalse(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(ws, 0, (1, 3)))))

    # Subsumed that is not an element is problematic.
    self.assertTrue(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(
            ws, (1, 3), (4, 6)))))

    # But if subsumed *is* an element, that is okay.
    # Here, the group being tested is an *existing* group.
    self.assertFalse(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(ws, (1, 3)))))

    # If a new group is crafted out of existing parts, such that is aligns
    # exactly with an existing group, it is not in conflict.
    g1 = helper_create_group_given_spans_of_items(ws, 1, 2, 3)
    self.assertFalse(tuple(ws.GetConflictingGroups(g1)))
Example #4
0
 def test_supergroups(self):
   ws = Workspace()
   ws.InsertElements(range(0, 10))
   helper_create_and_insert_groups(ws, ((1, 2, 3), (4, 5, 6), (7, 8)))
   self.assertEqual(1, len(tuple(ws.GetSuperGroups(ws.elements[1]))))
   g1 = helper_create_group_given_spans_of_items(ws, (1, 3))
   self.assertEqual(1, len(tuple(ws.GetSuperGroups(g1))))
   helper_create_and_insert_groups(ws, (3, 4))
   g2 = helper_create_group_given_spans_of_items(ws, (3, 4))
   self.assertEqual(0, len(tuple(ws.GetSuperGroups(g2))))
   self.assertEqual(2, len(tuple(ws.GetSuperGroups(ws.elements[3]))))
Example #5
0
  def test_plonk_into_place(self):
    ws = Workspace()
    ws.InsertElements((7, 8, 7, 8, 9))

    # Plonk an element... returns existing element.
    elt = SAnchored(SElement(8), (), 3, 3)
    self.assertEqual(ws.elements[3], ws._PlonkIntoPlace(elt))

    # Plonk a group, one item of which is an existing element, one novel. The plonked group
    # has the existing element as a subgroup.
    elt0 = SAnchored(SElement(7), (), 0, 0)
    elt1 = SAnchored(SElement(8), (), 1, 1)
    elt2 = SAnchored(SElement(7), (), 2, 2)
    elt3 = SAnchored(SElement(8), (), 3, 3)
    elt4 = SAnchored(SElement(9), (), 4, 4)
    numeric_successor = NumericMapping(name="succ", category=Number())
    numeric_sameness = NumericMapping(name="same", category=Number())

    successor_mapping_based_cat = MappingBasedCategory(mapping=numeric_successor)

    next_ascending = StructuralMapping(
        category=MappingBasedCategory(mapping=numeric_successor),
        bindings_mapping=frozenset((('length', numeric_successor),
                                    ('start', numeric_sameness))))
    gp1 = SAnchored.Create((elt0, elt1), underlying_mapping_set={numeric_successor})
    gp2 = SAnchored.Create((elt2, elt3, elt4), underlying_mapping_set={numeric_successor})
    gp3 = SAnchored.Create((gp1, gp2), underlying_mapping_set={next_ascending})

    self.assertTrue(gp1.object.IsKnownAsInstanceOf(successor_mapping_based_cat))

    plonked = ws._PlonkIntoPlace(gp3)
    self.assertEqual(((7, 8), (7, 8, 9)), plonked.Structure())
    existing_groups = list(ws.GetGroupsWithSpan(Exactly(0), Exactly(1)))
    self.assertEqual(existing_groups[0], plonked.items[0])
    self.assertTrue(plonked.items[0].object.IsKnownAsInstanceOf(successor_mapping_based_cat))
    self.assertTrue(numeric_successor in plonked.items[0].object.underlying_mapping_set)
    self.assertTrue(next_ascending in plonked.object.underlying_mapping_set)
Example #6
0
  def test_conflicting_groups_simple(self):
    ws = Workspace()
    ws.InsertElements(range(0, 10))
    helper_create_and_insert_groups(ws, (1, 2, 3), (4, 5, 6))
    self.assertEqual(2, len(ws.groups))

    # An overlapping group which overlaps by more than one subgroup is a conflict:
    self.assertTrue(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(ws, 2, 3, 4))))

    # Subsumed that is not an element is problematic.
    self.assertTrue(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(ws, 2, 3))))

    # But if subsumed *is* an element, that is okay.
    self.assertFalse(
        tuple(ws.GetConflictingGroups(helper_create_group_given_spans_of_items(ws, 2))))
Example #7
0
    def test_plonk_into_place(self):
        ws = Workspace()
        ws.InsertElements((7, 8, 7, 8, 9))

        # Plonk an element... returns existing element.
        elt = SAnchored(SElement(8), (), 3, 3)
        self.assertEqual(ws.elements[3], ws._PlonkIntoPlace(elt))

        # Plonk a group, one item of which is an existing element, one novel. The plonked group
        # has the existing element as a subgroup.
        elt0 = SAnchored(SElement(7), (), 0, 0)
        elt1 = SAnchored(SElement(8), (), 1, 1)
        elt2 = SAnchored(SElement(7), (), 2, 2)
        elt3 = SAnchored(SElement(8), (), 3, 3)
        elt4 = SAnchored(SElement(9), (), 4, 4)
        numeric_successor = NumericMapping(name="succ", category=Number())
        numeric_sameness = NumericMapping(name="same", category=Number())

        successor_mapping_based_cat = MappingBasedCategory(
            mapping=numeric_successor)

        next_ascending = StructuralMapping(
            category=MappingBasedCategory(mapping=numeric_successor),
            bindings_mapping=frozenset((('length', numeric_successor),
                                        ('start', numeric_sameness))))
        gp1 = SAnchored.Create(
            (elt0, elt1), underlying_mapping_set={numeric_successor})
        gp2 = SAnchored.Create(
            (elt2, elt3, elt4), underlying_mapping_set={numeric_successor})
        gp3 = SAnchored.Create(
            (gp1, gp2), underlying_mapping_set={next_ascending})

        self.assertTrue(gp1.object.IsKnownAsInstanceOf(
            successor_mapping_based_cat))

        plonked = ws._PlonkIntoPlace(gp3)
        self.assertEqual(((7, 8), (7, 8, 9)), plonked.Structure())
        existing_groups = list(ws.GetGroupsWithSpan(Exactly(0), Exactly(1)))
        self.assertEqual(existing_groups[0], plonked.items[0])
        self.assertTrue(plonked.items[0].object.IsKnownAsInstanceOf(
            successor_mapping_based_cat))
        self.assertTrue(numeric_successor in plonked.items[
                        0].object.underlying_mapping_set)
        self.assertTrue(
            next_ascending in plonked.object.underlying_mapping_set)
Example #8
0
 def SetupTestingWS(items):
   workspace = Workspace()
   workspace.InsertElements(items)
   return workspace
Example #9
0
 def __init__(self, items=None):
   Controller.__init__(self, ui=BatchUI(controller_class=Controller))
   workspace = self.workspace = Workspace()
   self.ltm = LTMGraph(empty_ok_for_test=True)
   if items:
     workspace.InsertElements(items)
Example #10
0
  def test_replacement(self):
    new_group = SAnchored.Create((SAnchored(SElement(7), (), 7, 7),
                                  SAnchored(SElement(8), (), 8, 8),
                                  SAnchored(SElement(9), (), 9, 9)))

    ws = Workspace()
    ws.InsertElements(range(0, 10))
    helper_create_and_insert_groups(ws, ((1, 2, 3), (4, 5, 6), (7, 8)))
    existing_group = list(ws.GetGroupsWithSpan(Exactly(7), Exactly(8)))[0]
    # Cannot replace a group which is not the topmost.
    self.assertRaises(CannotReplaceSubgroupException,
                      ws.Replace, existing_group, new_group)

    ws = Workspace()
    ws.InsertElements(range(0, 10))
    helper_create_and_insert_groups(ws, (7, 8))
    existing_group = list(ws.GetGroupsWithSpan(Exactly(7), Exactly(8)))[0]
    ws.Replace(existing_group, new_group)
    self.assertTrue(existing_group not in ws.groups)
    self.assertEqual(1, len(list(ws.GetGroupsWithSpan(Exactly(7), Exactly(9)))))

    # So now (7, 8, 9) is a group. Let's add a group (5, 6) and try and extend it to 5:8
    helper_create_and_insert_groups(ws, (5, 6))
    existing_group = list(ws.GetGroupsWithSpan(Exactly(5), Exactly(6)))[0]
    new_group = SAnchored.Create((SAnchored(SElement(5), (), 5, 5),
                                  SAnchored(SElement(6), (), 6, 6),
                                  SAnchored(SElement(7), (), 7, 7),
                                  SAnchored(SElement(8), (), 8, 8)))
    self.assertRaises(ConflictingGroupException,
                      ws.Replace, existing_group, new_group)
    # The original group still exists
    self.assertTrue(existing_group in ws.groups)
Example #11
0
 def setUp(self):
     self.ws = ws = Workspace()
     ws.InsertElements((5, 6, 7, 8))
     ws.InsertGroup(SAnchored.Create((ws.elements[0], ws.elements[1])))