def test_augmentation(self):
        import fast_denser.utilities.data as data
        import fast_denser.utilities.data_augmentation as data_augmentation
        import tensorflow as tf

        cifar_10 = data.load_dataset(dataset='cifar10')
        input_image = cifar_10['evo_x_train'][0]
        augmented_image = data_augmentation.augmentation(input_image)
        diff = input_image - augmented_image

        self.assertTrue(diff.sum() != 0, "Error augmenting an image")
    def __init__(self, dataset, fitness_metric):
        """
            Creates the Evaluator instance and loads the dataset.

            Parameters
            ----------
            dataset : str
                dataset to be loaded
        """

        self.dataset = load_dataset(dataset)
        self.fitness_metric = fitness_metric
    def test_load_datasets(self):
        import fast_denser.utilities.data as data

        fashion_mnist = data.load_dataset(dataset='fashion-mnist')
        mnist = data.load_dataset(dataset='mnist')
        svhn = data.load_dataset(dataset='svhn')
        cifar_10 = data.load_dataset(dataset='cifar10')
        cifar_100_fine = data.load_dataset(dataset='cifar100-fine')
        cifar_100_coarse = data.load_dataset(dataset='cifar100-coarse')
        tiny_imagenet = data.load_dataset(dataset='tiny-imagenet')

        self.assertTrue(fashion_mnist, "Error loading fashion-mnist")
        self.assertTrue(mnist, "Error loading mnist")
        self.assertTrue(svhn, "Error loading svhn")
        self.assertTrue(cifar_10, "Error loading cifar-10")
        self.assertTrue(cifar_100_fine, "Error loading cifar-100-fine")
        self.assertTrue(cifar_100_coarse, "Error loading cifar-100-coarse")
        self.assertTrue(tiny_imagenet, "Error loading cifar-100-coarse")

        with self.assertRaises(SystemExit) as cm:
            other = data.load_dataset(dataset='not valid')
            self.assertEqual(cm.exception.code, -1,
                             "Error: read invalid grammar")