def test_few_samples(self): g = kernel_smoothing(self.x, self.y, target_x=np.linspace(-5, 200, 5, dtype=np.float32), q=7) self.assertTrue(g is not None, msg="None output") self.assertEqual(len(g), 5)
def test_many_samples(self): x_ref_count = getrefcount(self.x) y_ref_count = getrefcount(self.y) target_x_ref_count = getrefcount(self.target_x) self.assertEqual(x_ref_count, y_ref_count) self.assertEqual(x_ref_count, target_x_ref_count) g = kernel_smoothing(self.x, self.y, target_x=self.target_x, q=7) self.assertEqual(x_ref_count, getrefcount(self.x)) self.assertEqual(y_ref_count, getrefcount(self.y)) self.assertEqual(target_x_ref_count, getrefcount(self.target_x)) self.assertEqual(1, getrefcount(g))
def test_large_smoothing(self): g = kernel_smoothing(self.x, self.y, f=1.5) self.assertTrue(g is not None, msg="None output") self.assertEqual(len(g), len(self.x))
def test_small(self): g = kernel_smoothing(self.x, self.y, q=1) self.assertTrue(g is not None, msg="None output") self.assertEqual(len(g), len(self.x))
def test_nans(self): x = [1, 2, 3, 4, 5, 6] y = [1, np.nan, 3, 4, np.nan, 6] g = kernel_smoothing(x, y, q=3) self.assertTrue(g is not None, msg="None output") self.assertEqual(len(g), len(x))
def test_numpy_float64(self): x = np.arange(0, 10, 1, dtype=np.float64) y = np.arange(0, 10, 1, dtype=np.float64) g = kernel_smoothing(x, y, q=3) self.assertTrue(g is not None, msg="None output") self.assertEqual(len(g), len(x))