Example #1
0
 def _transform(self, orig:ndarray, tfms:[Transform], model:nn.Module, sz:int):
     for tfm in tfms:
         orig,_=tfm(orig, False)
     _,val_tfms = tfms_from_stats(inception_stats, sz, crop_type=CropType.NO, aug_tfms=[])
     val_tfms.tfms = [tfm for tfm in val_tfms.tfms if not isinstance(tfm, NoCrop)]
     orig = val_tfms(orig)
     return orig
Example #2
0
def get_data(train_names,
             val_names,
             test_names,
             target_size,
             batch_size,
             n_workers=5):
    aug_tfms = [
        RandomRotate(30, tfm_y=TfmType.NO),
        RandomDihedral(tfm_y=TfmType.NO),
        RandomLighting(0.05, 0.05, tfm_y=TfmType.NO)
    ]
    # std and var
    stats = A([0.08069, 0.05258, 0.05487, 0.08282],
              [0.13704, 0.10145, 0.15313, 0.13814])
    tfms = tfms_from_stats(stats,
                           target_size,
                           crop_type=CropType.NO,
                           tfm_y=TfmType.NO,
                           aug_tfms=aug_tfms)

    datasets = ImageData.get_ds(
        HPADataset,
        (train_names[:-(len(train_names) % batch_size)], cfg.train_dir),
        (val_names, cfg.train_dir),
        tfms,
        test=(test_names, cfg.test_dir))

    img_ds = ImageData('./',
                       datasets,
                       batch_size,
                       num_workers=n_workers,
                       classes=None)

    return img_ds
Example #3
0
 def _transform(self, orig: ndarray, sz: int):
     for tfm in self.tfms:
         orig, _ = tfm(orig, False)
     _, val_tfms = tfms_from_stats(inception_stats,
                                   sz,
                                   crop_type=CropType.NO,
                                   aug_tfms=[])
     val_tfms.tfms = [
         tfm for tfm in val_tfms.tfms
         if not (isinstance(tfm, NoCrop) or isinstance(tfm, Scale))
     ]
     orig = val_tfms(orig)
     return orig
Example #4
0
class SetupModel(object):
    model = classification_model()
    labels = get_labels(LABELS_PATH)
    tfms = tfms_from_stats(STATS, SZ)[-1]

    def __init__(self, f):
        self.f = f
        file_path = f'/tmp/{STATE_DICT_NAME}'
        download_file(BUCKET_NAME, STATE_DICT_NAME, file_path)
        state_dict = torch.load(file_path,
                                map_location=lambda storage, loc: storage)
        self.model.load_state_dict(state_dict), self.model.eval()
        os.remove(file_path)

    def __call__(self, *args, **kwargs):
        return self.f(*args, **kwargs)
Example #5
0
import os, json, traceback
import urllib.parse
import torch
import numpy as np

from lib.models import classification_model
from lib.utils import download_file, get_labels, open_image_url
from fastai.core import A, T, VV_
from fastai.transforms import tfms_from_stats

BUCKET_NAME = os.environ['BUCKET_NAME']
STATE_DICT_NAME = os.environ['STATE_DICT_NAME']
STATS = A(*eval(os.environ['IMAGE_STATS']))
SZ = int(os.environ['IMAGE_SIZE'])
TFMS = tfms_from_stats(STATS, SZ)[-1]


class SetupModel(object):
    model = classification_model()
    labels = get_labels(os.environ['LABELS_PATH'])

    def __init__(self, f):
        self.f = f
        file_path = f'/tmp/{STATE_DICT_NAME}'
        download_file(BUCKET_NAME, STATE_DICT_NAME, file_path)
        state_dict = torch.load(file_path,
                                map_location=lambda storage, loc: storage)
        self.model.load_state_dict(state_dict), self.model.eval()
        os.remove(file_path)