Example #1
0
    def on_epoch_end(self, data: Data):
        device = next(self.model.parameters()).device
        for _ in range(self.trials):
            img_path = self.dataset.one_shot_trial(self.N)
            input_img = (
                np.array([
                    np.expand_dims(cv2.imread(i, cv2.IMREAD_GRAYSCALE),
                                   -1).reshape((1, 105, 105)) / 255.
                    for i in img_path[0]
                ],
                         dtype=np.float32),
                np.array([
                    np.expand_dims(cv2.imread(i, cv2.IMREAD_GRAYSCALE),
                                   -1).reshape((1, 105, 105)) / 255.
                    for i in img_path[1]
                ],
                         dtype=np.float32))

            input_img = (to_tensor(input_img[0], "torch").to(device),
                         to_tensor(input_img[1], "torch").to(device))
            model = self.model.module if torch.cuda.device_count(
            ) > 1 else self.model
            prediction_score = feed_forward(
                model, input_img, training=False).cpu().detach().numpy()

            if np.argmax(
                    prediction_score) == 0 and prediction_score.std() > 0.01:
                self.correct += 1

            self.total += 1

        data.write_with_log(self.outputs[0], self.correct / self.total)
Example #2
0
 def setUpClass(self):
     self.pytorch_array = to_tensor(
         np.arange(0.0, 8.0, 1.0, dtype=np.float32).reshape(
             (1, 1, 2, 2, 2)), 'torch')
     self.tensorflow_array = to_tensor(
         np.arange(0.0, 8.0, 1.0, dtype=np.float32).reshape(
             (1, 2, 2, 2, 1)), 'tf')
Example #3
0
 def test_normalize_torch_float(self):
     op = Normalize(inputs="image",
                    outputs="image",
                    mean=0.482,
                    std=0.289,
                    max_pixel_value=27.0)
     data = op.forward(data=to_tensor(self.numpy_array, "torch"), state={})
     np.testing.assert_array_almost_equal(data.numpy(),
                                          self.expected_result, 2)
Example #4
0
 def test_normalize_torch_multi(self):
     op = Normalize(inputs="image",
                    outputs="image",
                    mean=(0.44, 0.48, 0.52),
                    std=(0.287, 0.287, 0.287),
                    max_pixel_value=27)
     data = op.forward(data=to_tensor(self.numpy_array, "torch"), state={})
     np.testing.assert_array_almost_equal(data.numpy(),
                                          self.expected_result_multi, 2)
Example #5
0
 def test_normalize_torch_value_int(self):
     np.testing.assert_array_almost_equal(
         normalize(to_tensor(self.numpy_array_int, 'torch'), 0.5,
                   0.31382295, 11.0).numpy(), self.expected_result)