Example #1
0
    def training_step(self, batch, batch_idx):
        subsampled_kspace, _, _, _, _, _, mask1 = batch
        mask2 = -(mask1-1)

        subsampled_kspace1 = subsampled_kspace * mask1 + 0.0
        subsampled_kspace2 = subsampled_kspace * mask2 + 0.0

        image1 = fastmri.ifft2c(subsampled_kspace1)
        image1 = fastmri.complex_abs(image1)
        image2 = fastmri.ifft2c(subsampled_kspace2)
        image2 = fastmri.complex_abs(image2)

        image = torch.vstack((image1, image2))

        output_image = self(image)

        output_image1 = output_image[0,:,:]
        output_image2 = output_image[1,:,:]

        output_kspace1 = torch.fft.fft2(output_image1)
        output_kspace1 = torch.stack((output_kspace1.real, output_kspace1.imag), axis=-1)
        output_kspace1 = output_kspace1 * mask2 + 0.0
        output_kspace2 = torch.fft.fft2(output_image2)
        output_kspace2 = torch.stack((output_kspace2.real, output_kspace2.imag), axis=-1)
        output_kspace2 = output_kspace2 * mask1 + 0.0

        loss = l1_l2_loss(output_kspace1, subsampled_kspace2) \
            + l1_l2_loss(output_kspace2, subsampled_kspace1)

        self.log("loss", loss.detach())

        return loss
Example #2
0
    def forward(self, kspace_pred: torch.Tensor, ref_kspace: torch.Tensor):
        """
            Compute data consistency loss in kspace and 
            total variation loss in image space.
    
            Inputs:
            - kspace_pred: PyTorch tensor of shape (N, H, W, 2) holding predicted kspace.
            - ref_kspace : input masked kspace 
    
            Returns:
            - loss: PyTorch Variable holding a scalar giving the total variation loss
              for img.
        """

        output = fastmri.complex_abs(fastmri.ifft2c(kspace_pred))
        gt = fastmri.complex_abs(fastmri.ifft2c(ref_kspace))
        # energy_loss = torch.abs(torch.sum(output) - torch.sum(gt))

        hdiff_pred = (output[:, :, :-1] - output[:, :, 1:]).view(-1)
        hdiff_gt = (gt[:, :, :-1] - gt[:, :, 1:]).view(-1)

        vdiff_pred = (output[:, :-1, :] - output[:, 1:, :]).view(-1)
        vdiff_gt = (gt[:, :-1, :] - gt[:, 1:, :]).view(-1)

        hdiff_var_loss = torch.sqrt(
            torch.var(hdiff_pred)) - 1.25 * torch.sqrt(torch.var(hdiff_gt))
        vdiff_var_loss = torch.sqrt(
            torch.var(vdiff_pred)) - 1.25 * torch.sqrt(torch.var(vdiff_gt))

        tv_loss = (torch.abs(hdiff_var_loss) + torch.abs(vdiff_var_loss))
        return self.tv_weight * tv_loss
Example #3
0
def hist_loss(current_kspace: torch.Tensor,
              masked_kspace: torch.Tensor,
              bins: int = 5):
    """    
        Inputs:
        - kspace_pred: PyTorch tensor of shape (N, H, W, 2) holding predicted kspace.
        - ref_kspace : input masked kspace 
        - mask: the subsampling mask
    
        Returns:
        - loss: PyTorch Variable holding a scalar giving the total variation loss
          for img.
    """
    output = fastmri.complex_abs(fastmri.ifft2c(current_kspace))
    gt = fastmri.complex_abs(fastmri.ifft2c(masked_kspace))

    hdiff_pred = (output[:, :, :-1] - output[:, :, 1:]).view(-1)
    hdiff_gt = (gt[:, :, :-1] - gt[:, :, 1:]).view(-1)
    hmin_pred, hmax_pred = hdiff_pred.min().item(), hdiff_pred.max().item()
    hmin_gt, hmax_gt = hdiff_gt.min().item(), hdiff_gt.max().item()
    hist_x = differentiable_histogram(hdiff_pred,
                                      bins=bins,
                                      min=hmin_pred,
                                      max=hmax_pred)
    hist_y = differentiable_histogram(hdiff_gt,
                                      bins=bins,
                                      min=hmin_gt,
                                      max=hmax_gt)
    hdiff_hist_loss = (hist_x - hist_y) / len(hdiff_pred)
    hdiff_hist_loss = torch.norm(hdiff_hist_loss)

    vdiff_pred = (output[:, :-1, :] - output[:, 1:, :]).view(-1)
    vdiff_gt = (gt[:, :-1, :] - gt[:, 1:, :]).view(-1)
    vmin_pred, vmax_pred = vdiff_pred.min().item(), vdiff_pred.max().item()
    vmin_gt, vmax_gt = vdiff_gt.min().item(), vdiff_gt.max().item()
    hist_x = differentiable_histogram(vdiff_pred,
                                      bins=bins,
                                      min=vmin_pred,
                                      max=vmax_pred)
    hist_y = differentiable_histogram(vdiff_gt,
                                      bins=bins,
                                      min=vmin_gt,
                                      max=vmax_gt)
    vdiff_hist_loss = (hist_x - hist_y) / len(vdiff_pred)
    vdiff_hist_loss = torch.norm(vdiff_hist_loss)

    output = output.view(-1)
    gt = gt.view(-1)
    gt_min, gt_max = gt.min().item(), gt.max().item()
    hist_x = differentiable_histogram(output,
                                      bins=bins,
                                      min=gt_min,
                                      max=gt_max)
    hist_y = differentiable_histogram(gt, bins=bins, min=gt_min, max=gt_max)
    gt_hist_loss = (hist_x - hist_y) / len(output)
    gt_hist_loss = torch.norm(gt_hist_loss)

    return (hdiff_hist_loss + vdiff_hist_loss + gt_hist_loss)
Example #4
0
def load_data(file_dir_path):
    file_path = get_files(file_dir_path)
    file_num = len(file_path)
    total_image_list = []
    total_sampled_image_list = []
    for h5_num in range(file_num):
        total_kspace, slices_num = load_dataset(file_path[0])
        image_list = []
        slice_kspace_tensor_list = []
        for i in range(slices_num):
            slice_kspace = total_kspace[i]
            slice_kspace_tensor = T.to_tensor(
                slice_kspace)  # convert numpy to tensor
            slice_image = fastmri.ifft2c(
                slice_kspace_tensor)  # inverse fast FT
            slice_image_abs = fastmri.complex_abs(
                slice_image)  # compute the absolute value to get a real image
            image_list.append(slice_image_abs)
            slice_kspace_tensor_list.append(
                slice_kspace_tensor)  # 35* torch[640, 368])

        image_list_tensor = torch.stack(image_list,
                                        dim=0)  # torch.Size([35, 640, 368])
        total_image_list.append(image_list_tensor)
        mask_func = RandomMaskFunc(
            center_fractions=[0.08],
            accelerations=[4])  # create the mask function object
        sampled_image_list = []
        for i in range(slices_num):
            slice_kspace_tensor = slice_kspace_tensor_list[i]
            masked_kspace, mask = T.apply_mask(slice_kspace_tensor, mask_func)
            Ny, Nx, _ = slice_kspace_tensor.shape
            mask = mask.repeat(Ny, 1, 1).squeeze()
            # functions.show_slice(mask, cmap='gray')
            # functions.show_slice(image_list[10], cmap='gray')
            sampled_image = fastmri.ifft2c(
                masked_kspace)  # inverse fast FT to get the complex image
            sampled_image_abs = fastmri.complex_abs(sampled_image)
            sampled_image_list.append(sampled_image_abs)
        sampled_image_list_tensor = torch.stack(
            sampled_image_list, dim=0)  # torch.Size([35, 640, 368])
        total_sampled_image_list.append(sampled_image_list_tensor)
    # total_image_tensor = torch.cat(total_image_list, dim=0)                       # torch.Size([6965, 640, 368])
    # total_sampled_image_tensor = torch.cat(total_sampled_image_list, dim=0)       # torch.Size([6965, 640, 368])
    total_image_tensor = torch.stack(total_image_list,
                                     dim=0)  # torch.Size([199, 35, 640, 368])
    total_sampled_image_tensor = torch.stack(
        total_sampled_image_list, dim=0)  # torch.Size([199, 35, 640, 368])
    print(total_image_tensor.shape)
    print(total_sampled_image_tensor.shape)
    return total_image_tensor, total_sampled_image_tensor
def to_cropped_image(masked_kspace, target, attrs):
    # inverse Fourier transform to get zero filled solution
    image = fastmri.ifft2c(masked_kspace)

    # crop input to correct size
    if target is not None:
        crop_size = (target.shape[-2], target.shape[-1])
    else:
        crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

    # check for FLAIR 203
    if image.shape[-2] < crop_size[1]:
        crop_size = (image.shape[-2], image.shape[-2])

    image = T.complex_center_crop(image, crop_size)

    # absolute value
    image = fastmri.complex_abs(image)

    # normalize input
    image, mean, std = T.normalize_instance(image, eps=1e-11)
    image = image.clamp(-6, 6)

    # normalize target
    if target is not None:
        if isinstance(target, np.ndarray):
            target = T.to_tensor(target)
        target = T.center_crop(target, crop_size)
        target = T.normalize(target, mean, std, eps=1e-11)
        target = target.clamp(-6, 6)
    else:
        target = torch.Tensor([0])

    return image, target
Example #6
0
def save_zero_filled(data_dir, out_dir, which_challenge):
    reconstructions = {}

    for f in data_dir.iterdir():
        with h5py.File(f, "r") as hf:
            enc = ismrmrd.xsd.CreateFromDocument(hf["ismrmrd_header"][()]).encoding[0]
            masked_kspace = transforms.to_tensor(hf["kspace"][()])

            # extract target image width, height from ismrmrd header
            crop_size = (enc.reconSpace.matrixSize.x, enc.reconSpace.matrixSize.y)

            # inverse Fourier Transform to get zero filled solution
            image = fastmri.ifft2c(masked_kspace)

            # check for FLAIR 203
            if image.shape[-2] < crop_size[1]:
                crop_size = (image.shape[-2], image.shape[-2])

            # crop input image
            image = transforms.complex_center_crop(image, crop_size)

            # absolute value
            image = fastmri.complex_abs(image)

            # apply Root-Sum-of-Squares if multicoil data
            if which_challenge == "multicoil":
                image = fastmri.rss(image, dim=1)

            reconstructions[f.name] = image

    fastmri.save_reconstructions(reconstructions, out_dir)
def save_zero_filled(data_dir, out_dir, which_challenge):
    reconstructions = {}

    for fname in tqdm(list(data_dir.glob("*.h5"))):
        with h5py.File(fname, "r") as hf:
            et_root = etree.fromstring(hf["ismrmrd_header"][()])
            masked_kspace = transforms.to_tensor(hf["kspace"][()])

            # extract target image width, height from ismrmrd header
            enc = ["encoding", "encodedSpace", "matrixSize"]
            crop_size = (
                int(et_query(et_root, enc + ["x"])),
                int(et_query(et_root, enc + ["y"])),
            )

            # inverse Fourier Transform to get zero filled solution
            image = fastmri.ifft2c(masked_kspace)

            # check for FLAIR 203
            if image.shape[-2] < crop_size[1]:
                crop_size = (image.shape[-2], image.shape[-2])

            # crop input image
            image = transforms.complex_center_crop(image, crop_size)

            # absolute value
            image = fastmri.complex_abs(image)

            # apply Root-Sum-of-Squares if multicoil data
            if which_challenge == "multicoil":
                image = fastmri.rss(image, dim=1)

            reconstructions[fname.name] = image

    fastmri.save_reconstructions(reconstructions, out_dir)
Example #8
0
    def __call__(self, target, fname, slice_num=0, attrs=None, seed=None):
        # Preprocess the data here
        # target shape: [H, W, 1] or [H, W, 3]
        img = target
        if target.shape[2] != 2:
            img = np.concatenate((target, np.zeros_like(target)), axis=2)
        assert img.shape[-1] == 2
        img = to_tensor(img)
        kspace = fastmri.fft2c(img)

        center_kspace, _ = apply_mask(kspace,
                                      self.mask_func,
                                      hamming=True,
                                      seed=seed)
        img_LF = fastmri.complex_abs(fastmri.ifft2c(center_kspace))
        img_LF = img_LF.unsqueeze(0)
        image, mean, std = normalize_instance(img_LF, eps=1e-11)
        image = image.clamp(-6, 6)
        # img_LF tensor should have shape [H, W, ?]
        target = to_tensor(np.transpose(target,
                                        (2, 0, 1)))  # target shape [1, H, W]
        target = normalize(target, mean, std, eps=1e-11)
        target = target.clamp(-6, 6)
        target = target.squeeze(0)
        # check for max value
        max_value = 0.0
        # print('traget shape', target.shape)
        # print('image shape', image.shape)
        return image, target, mean, std, fname, slice_num, max_value
Example #9
0
def load_data_from_pathlist(path):
    file_num = len(path)
    use_num = file_num // 3
    total_target_list = []
    total_sampled_image_list = []
    for h5_num in range(use_num):
        total_kspace, slices_num, target = load_dataset(path[h5_num])
        image_list = []
        slice_kspace_tensor_list = []
        target_image_list = []
        for i in range(slices_num):
            slice_kspace = total_kspace[i]
            #target_image = target[i]
            slice_kspace_tensor = T.to_tensor(
                slice_kspace)  # convert numpy to tensor
            slice_kspace_tensor = slice_kspace_tensor.float()
            #print(slice_kspace_tensor.shape)
            slice_kspace_tensor_list.append(
                slice_kspace_tensor)  # 35* torch[640, 368])
            #target = target_image_list.append(target_image)

        #image_list_tensor = torch.stack(image_list, dim=0)  # torch.Size([35, 640, 368])
        #total_image_list.append(image_list_tensor)
        mask_func = RandomMaskFunc(
            center_fractions=[0.08],
            accelerations=[4])  # create the mask function object
        sampled_image_list = []
        target_list = []
        for i in range(slices_num):
            slice_kspace_tensor = slice_kspace_tensor_list[i]
            masked_kspace, mask = T.apply_mask(slice_kspace_tensor, mask_func)
            Ny, Nx, _ = slice_kspace_tensor.shape
            mask = mask.repeat(Ny, 1, 1).squeeze()
            # functions.show_slice(mask, cmap='gray')
            # functions.show_slice(image_list[10], cmap='gray')
            sampled_image = fastmri.ifft2c(
                masked_kspace)  # inverse fast FT to get the complex image
            sampled_image = T.complex_center_crop(sampled_image, (320, 320))
            sampled_image_abs = fastmri.complex_abs(sampled_image)
            sampled_image_list.append(sampled_image_abs)
        sampled_image_list_tensor = torch.stack(
            sampled_image_list, dim=0)  # torch.Size([35, 640, 368])
        total_sampled_image_list.append(sampled_image_list_tensor)
        target = T.to_tensor(target)
        total_target_list.append(target)
    #target_image_tensor = torch.cat(target_image_list, dim=0)                       # torch.Size([6965, 640, 368])
    total_target = torch.cat(total_target_list, dim=0)
    total_sampled_image_tensor = torch.cat(
        total_sampled_image_list, dim=0)  # torch.Size([6965, 640, 368])
    total_sampled_image_tensor, mean, std = T.normalize_instance(
        total_sampled_image_tensor, eps=1e-11)
    total_sampled_image_tensor = total_sampled_image_tensor.clamp(-6, 6)
    target_image_tensor = T.normalize(total_target, mean, std, eps=1e-11)
    target_image_tensor = target_image_tensor.clamp(-6, 6)
    # total_image_tensor = torch.stack(total_image_list, dim=0)  # torch.Size([199, 35, 640, 368])
    # total_sampled_image_tensor = torch.stack(total_sampled_image_list, dim=0)  # torch.Size([199, 35, 640, 368])
    #print(target_image_tensor.shape)
    #print(total_sampled_image_tensor.shape)
    return target_image_tensor, total_sampled_image_tensor
Example #10
0
def test_complex_abs(shape):
    shape = shape + [2]
    x = create_input(shape)
    out_torch = fastmri.complex_abs(x).numpy()
    input_numpy = transforms.tensor_to_complex_np(x)
    out_numpy = np.abs(input_numpy)

    assert np.allclose(out_torch, out_numpy)
Example #11
0
    def forward(self, masked_kspace, mask):
        sens_maps = self.sens_net(masked_kspace, mask)
        kspace_pred = masked_kspace.clone()

        for cascade in self.cascades:
            kspace_pred = cascade(kspace_pred, masked_kspace, mask, sens_maps)

        return fastmri.rss(fastmri.complex_abs(fastmri.ifft2c(kspace_pred)),
                           dim=1)
def visualize_kspace(kspace, dim=None, crop=False, output_filepath=None):
    kspace = fastmri.ifft2c(kspace)
    if crop:
        crop_size = (kspace.shape[-2], kspace.shape[-2])
        kspace = T.complex_center_crop(kspace, crop_size)
        kspace = fastmri.complex_abs(kspace)
        kspace, _, _ = T.normalize_instance(kspace, eps=1e-11)
        kspace = kspace.clamp(-6, 6)
    else:
        # Compute absolute value to get a real image
        kspace = fastmri.complex_abs(kspace)
    if dim is not None:
        kspace = fastmri.rss(kspace, dim=dim)
    img = np.abs(kspace.numpy())
    if output_filepath is not None:
        if not output_filepath.parent.exists():
            output_filepath.parent.mkdir(parents=True)
        plt.imshow(img, cmap='gray')
        plt.axis("off")
        plt.savefig(output_filepath, bbox_inches="tight", pad_inches=0)
    else:
        plt.imshow(img, cmap='gray')
        plt.show()
Example #13
0
    def forward(
        self,
        masked_kspace: torch.Tensor,
        mask: torch.Tensor,
        num_low_frequencies: Optional[int] = None,
    ) -> torch.Tensor:
        sens_maps = self.sens_net(masked_kspace, mask, num_low_frequencies)
        kspace_pred = masked_kspace.clone()

        for cascade in self.cascades:
            kspace_pred = cascade(kspace_pred, masked_kspace, mask, sens_maps)

        return fastmri.rss(fastmri.complex_abs(fastmri.ifft2c(kspace_pred)),
                           dim=1)
Example #14
0
def print_slice(complex_slice, name=None):
    """
    This function should be used only to print the output of a CRNN-i unit, 
    in that it considers a complex input image in 4 dimensions, 
    with shape (1, 2, 320, 320)
    """
    if name: print("***********" + name + "**********")
    slice = complex_slice.clone()
    slice = slice.detach()
    slice = slice.cpu()
    slice = slice.permute(0, 2, 3, 1)
    slice = slice.squeeze()
    slice_image_abs = fastmri.complex_abs(slice)
    plt.imshow(slice_image_abs, cmap='gray')
    plt.show()
Example #15
0
    def test_step(self, batch, batch_idx):
        masked_kspace, _, fname, slice_num, _, attrs, _ = batch = batch

        # image, _ = to_cropped_image(masked_kspace, None, attrs)

        image = fastmri.ifft2c(masked_kspace)
        image = fastmri.complex_abs(image)

        output = self.forward(image)

        return {
            "fname": fname,
            "slice": slice_num,
            "output": output.cpu().numpy(),
        }
Example #16
0
    def validation_step(self, batch, batch_idx):
        masked_kspace, mask, target, fname, slice_num, max_value, _ = batch

        kspace_pred = self(masked_kspace, mask)
        output = fastmri.complex_abs(fastmri.ifft2c(kspace_pred))
        target, output = transforms.center_crop_to_smallest(target, output)

        return {
            "batch_idx": batch_idx,
            "fname": fname,
            "slice_num": slice_num,
            "max_value": max_value,
            "output": output,
            "target": target,
            "val_loss": self.loss(kspace_pred, masked_kspace),
        }
Example #17
0
    def test_step(self, batch, batch_idx):
        masked_kspace, mask, _, fname, slice_num, _, crop_size = batch
        crop_size = crop_size[0]  # always have a batch size of 1 for varnet

        kspace_pred = self(masked_kspace, mask)
        output = fastmri.complex_abs(fastmri.ifft2c(kspace_pred))

        # check for FLAIR 203
        if output.shape[-1] < crop_size[1]:
            crop_size = (output.shape[-1], output.shape[-1])

        output = transforms.center_crop(output, crop_size)

        return {
            "fname": fname,
            "slice": slice_num,
            "output": output.cpu().numpy(),
        }
Example #18
0
def _base_fastmri_unet_transform(
    kspace,
    mask,
    ground_truth,
    attrs,
    which_challenge="singlecoil",
):
    kspace = fastmri_transforms.to_tensor(kspace)

    mask = mask[..., :kspace.shape[-2]]  # accounting for variable size masks
    masked_kspace = kspace * mask.unsqueeze(-1) + 0.0

    # inverse Fourier transform to get zero filled solution
    image = fastmri.ifft2c(masked_kspace)

    # crop input to correct size
    if ground_truth is not None:
        crop_size = (ground_truth.shape[-2], ground_truth.shape[-1])
    else:
        crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

    # check for FLAIR 203
    if image.shape[-2] < crop_size[1]:
        crop_size = (image.shape[-2], image.shape[-2])

    # noinspection PyTypeChecker
    image = fastmri_transforms.complex_center_crop(image, crop_size)

    # absolute value
    image = fastmri.complex_abs(image)

    # apply Root-Sum-of-Squares if multicoil data
    if which_challenge == "multicoil":
        image = fastmri.rss(image)

    # normalize input
    image, mean, std = fastmri_transforms.normalize_instance(image, eps=1e-11)
    image = image.clamp(-6, 6)

    return image.unsqueeze(0), mean, std
Example #19
0
    def training_step(self, batch, batch_idx):
        subsampled_kspace, _, _, _, _, _, mask_loss = batch
        mask_train = -(mask_loss-1)

        subsampled_kspace_train = subsampled_kspace * mask_train + 0.0
        subsampled_kspace_loss = subsampled_kspace * mask_loss + 0.0

        image_train = fastmri.ifft2c(subsampled_kspace_train)
        image_train = fastmri.complex_abs(image_train)

        output_image = self(image_train)

        output_kspace = torch.fft.fft2(output_image)
        output_kspace = torch.stack((output_kspace.real, output_kspace.imag), axis=-1)

        output_kspace_loss = output_kspace * mask_loss + 0.0

        loss = l1_l2_loss(output_kspace_loss, subsampled_kspace_loss)

        self.log("loss", loss.detach())

        return loss
Example #20
0
    def __call__(
        self,
        kspace: np.ndarray,
        mask: np.ndarray,
        target: np.ndarray,
        attrs: Dict,
        fname: str,
        slice_num: int,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, str,
               int, float]:
        """
        Args:
            kspace: Input k-space of shape (num_coils, rows, cols) for
                multi-coil data or (rows, cols) for single coil data.
            mask: Mask from the test dataset.
            target: Target image.
            attrs: Acquisition related information stored in the HDF5 object.
            fname: File name.
            slice_num: Serial number of the slice.

        Returns:
            tuple containing:
                image: Zero-filled input image.
                target: Target image converted to a torch.Tensor.
                mean: Mean value used for normalization.
                std: Standard deviation value used for normalization.
                fname: File name.
                slice_num: Serial number of the slice.
        """
        kspace = to_tensor(kspace)

        # check for max value
        max_value = attrs["max"] if "max" in attrs.keys() else 0.0

        # crop input to correct size
        if target is not None:
            crop_size = (target.shape[-2], target.shape[-1])
        else:
            crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])
        is_label = attrs["is_label"]
        if is_label:

            # Handling Label image
            if self.strong_mask_func:
                seed = None if not self.use_seed else tuple(map(ord, fname))
                masked_kspace, mask = apply_mask(kspace, self.strong_mask_func,
                                                 seed)
            else:
                masked_kspace = kspace
            image = fastmri.ifft2c(masked_kspace)
            # print("kspace shape:\n", kspace.shape)
            # print("labellel_image shape:\n", labelled_image.shape)
            # print("cropsize shape: 1\n", crop_size)
            # print("labelled_kspace shape:\n", labelled_kspace.shape)
            # check for FLAIR 203
            if image.shape[-2] < crop_size[1]:
                crop_size = (image.shape[-2], image.shape[-2])
            # print("cropsize shape: 2\n", crop_size)
            image = complex_center_crop(image, crop_size)

            # absolute value
            image = fastmri.complex_abs(image)

            # apply Root-Sum-of-Squares if multicoil data
            if self.which_challenge == "multicoil":
                image = fastmri.rss(image)

            image, label_mean, label_std = normalize_instance(image, eps=1e-11)
            lalbeled_image = image.clamp(-6, 6)

            # normalize target
            if target is not None:
                labeled_target = to_tensor(target)
                labeled_target = center_crop(labeled_target, crop_size)
                labeled_target = normalize(labeled_target,
                                           label_mean,
                                           label_std,
                                           eps=1e-11)
                labeled_target = labeled_target.clamp(-6, 6)
            else:
                labeled_target = torch.Tensor([0])
            return lalbeled_image, lalbeled_image, labeled_target, label_mean, label_std, fname, slice_num, max_value

        # unlabel kspace image handling
        unlabelled_kspace = kspace
        if target is not None:
            unlabelled_target = target

        if self.weak_mask_func:
            seed = None if not self.use_seed else tuple(map(ord, fname))
            weak_masked_kspace, weak_mask = apply_mask(kspace,
                                                       self.weak_mask_func,
                                                       seed)
        else:
            weak_masked_kspace = unlabelled_kspace

        # inverse Fourier transform to get zero filled solution
        weak_image = fastmri.ifft2c(weak_masked_kspace)

        # check for FLAIR 203
        if weak_image.shape[-2] < crop_size[1]:
            crop_size = (weak_image.shape[-2], weak_image.shape[-2])

        weak_image = complex_center_crop(weak_image, crop_size)

        # absolute value
        weak_image = fastmri.complex_abs(weak_image)

        # apply Root-Sum-of-Squares if multicoil data
        if self.which_challenge == "multicoil":
            weak_image = fastmri.rss(weak_image)

        if self.strong_mask_func:
            seed = None if not self.use_seed else tuple(map(ord, fname))
            strong_masked_kspace, strong_mask = apply_mask(
                unlabelled_kspace, self.strong_mask_func, seed)
        else:
            strong_masked_kspace = unlabelled_kspace

        # inverse Fourier transform to get zero filled solution
        strong_image = fastmri.ifft2c(strong_masked_kspace)

        # check for FLAIR 203
        if strong_image.shape[-2] < crop_size[1]:
            crop_size = (strong_image.shape[-2], strong_image.shape[-2])

        strong_image = complex_center_crop(strong_image, crop_size)

        # absolute value
        strong_image = fastmri.complex_abs(strong_image)

        # apply Root-Sum-of-Squares if multicoil data
        if self.which_challenge == "multicoil":
            strong_image = fastmri.rss(strong_image)

        image_cat = torch.stack([weak_image, strong_image], dim=0)
        image_cat, unlabel_mean, unlabel_std = normalize_instance(image_cat,
                                                                  eps=1e-11)
        image_cat = image_cat.clamp(-6, 6)
        weak_image, strong_image = image_cat[0], image_cat[1]

        # normalize target
        if target is not None:
            unlabelled_target = to_tensor(unlabelled_target)
            unlabelled_target = center_crop(unlabelled_target, crop_size)
            unlabelled_target = normalize(unlabelled_target,
                                          unlabel_mean,
                                          unlabel_std,
                                          eps=1e-11)
            unlabelled_target = unlabelled_target.clamp(-6, 6)
        else:
            unlabelled_target = torch.Tensor([0])

        return weak_image, strong_image, unlabelled_target, unlabel_mean, unlabel_std, fname, slice_num, max_value
Example #21
0
    def forward(self, kspace_pred: torch.Tensor, ref_kspace: torch.Tensor):
        """
            Compute data consistency loss in kspace and 
            total variation loss in image space.
    
            Inputs:
            - kspace_pred: PyTorch tensor of shape (N, H, W, 2) holding predicted kspace.
            - ref_kspace : input masked kspace 
            - mask: the subsampling mask
    
            Returns:
            - loss: PyTorch Variable holding a scalar giving the total variation loss
              for img.
        """
        # zero = torch.zeros(1, 1, 1, 1).to(kspace_pred)
        # dc_loss = torch.where(mask, kspace_pred - ref_kspace, zero)
        # dc_loss = torch.norm(dc_loss)
        # dc_loss = torch.max(torch.abs(dc_loss))
        # dc_loss = dc_loss / torch.max(torch.abs(ref_kspace))

        output = fastmri.complex_abs(fastmri.ifft2c(kspace_pred))
        gt = fastmri.complex_abs(fastmri.ifft2c(ref_kspace))
        # energy_loss = torch.abs(torch.sum(output) - torch.sum(gt))

        hdiff_pred = (output[:, :, :-1] - output[:, :, 1:]).view(-1)
        hdiff_gt = (gt[:, :, :-1] - gt[:, :, 1:]).view(-1)
        hmin_pred, hmax_pred = hdiff_pred.min().item(), hdiff_pred.max().item()
        hmin_gt, hmax_gt = hdiff_gt.min().item(), hdiff_gt.max().item()
        hist_x = self.differentiable_histogram(hdiff_pred,
                                               bins=self.bins,
                                               min=hmin_pred,
                                               max=hmax_pred)
        hist_y = self.differentiable_histogram(hdiff_gt,
                                               bins=self.bins,
                                               min=hmin_gt,
                                               max=hmax_gt)
        hdiff_hist_loss = (hist_x - hist_y) / len(hdiff_pred)
        hdiff_hist_loss = torch.norm(hdiff_hist_loss)

        vdiff_pred = (output[:, :-1, :] - output[:, 1:, :]).view(-1)
        vdiff_gt = (gt[:, :-1, :] - gt[:, 1:, :]).view(-1)
        vmin_pred, vmax_pred = vdiff_pred.min().item(), vdiff_pred.max().item()
        vmin_gt, vmax_gt = vdiff_gt.min().item(), vdiff_gt.max().item()
        hist_x = self.differentiable_histogram(vdiff_pred,
                                               bins=self.bins,
                                               min=vmin_pred,
                                               max=vmax_pred)
        hist_y = self.differentiable_histogram(vdiff_gt,
                                               bins=self.bins,
                                               min=vmin_gt,
                                               max=vmax_gt)
        vdiff_hist_loss = (hist_x - hist_y) / len(vdiff_pred)
        vdiff_hist_loss = torch.norm(vdiff_hist_loss)

        output = output.view(-1)
        gt = gt.view(-1)
        gt_min, gt_max = gt.min().item(), gt.max().item()
        hist_x = self.differentiable_histogram(output,
                                               bins=self.bins,
                                               min=gt_min,
                                               max=gt_max)
        hist_y = self.differentiable_histogram(gt,
                                               bins=self.bins,
                                               min=gt_min,
                                               max=gt_max)
        gt_hist_loss = (hist_x - hist_y) / len(output)
        gt_hist_loss = torch.norm(gt_hist_loss)

        hdiff_var_loss = torch.sqrt(
            torch.var(hdiff_pred)) - 1.5 * torch.sqrt(torch.var(hdiff_gt))
        vdiff_var_loss = torch.sqrt(
            torch.var(vdiff_pred)) - 1.5 * torch.sqrt(torch.var(vdiff_gt))
        # intensity_var_loss = torch.abs(torch.sqrt(torch.var(output.view(-1))) -
        #                       torch.sqrt(torch.var(gt.view(-1))))

        tv_loss = (torch.abs(hdiff_var_loss) + torch.abs(vdiff_var_loss))
        hist_loss = hdiff_hist_loss + vdiff_hist_loss
        return (self.intensity_weight * gt_hist_loss +
                self.hist_weight * hist_loss + self.tv_weight * tv_loss)
Example #22
0
# The fastMRI repo contains some utlity functions to convert k-space into image space. These functions work on PyTorch Tensors. The to_tensor function can convert Numpy arrays to PyTorch Tensors.

# In[9]:


import fastmri
from fastmri.data import transforms as T


# In[10]:


slice_kspace2 = T.to_tensor(slice_kspace)      # Convert from numpy array to pytorch tensor
slice_image = fastmri.ifft2c(slice_kspace2)           # Apply Inverse Fourier Transform to get the complex image
slice_image_abs = fastmri.complex_abs(slice_image)   # Compute absolute value to get a real image

# SSIM loss
loss = fastmri.SSIMLoss()
print(loss(slice_image_abs.unsqueeze(1), slice_image_abs.unsqueeze(1), data_range=slice_image_abs.max().reshape(-1)))
# In[15]:


show_coils(slice_image_abs, [0], cmap='gray')


# As we can see, each coil in a multi-coil MRI scan focusses on a different region of the image. These coils can be combined into the full image using the Root-Sum-of-Squares (RSS) transform.

# In[16]:

Example #23
0
    def __call__(self, kspace, mask, target, attrs, fname, slice_num):
        """
        Args:
            kspace (numpy.array): Input k-space of shape (num_coils, rows,
                cols, 2) for multi-coil data or (rows, cols, 2) for single coil
                data.
            mask (numpy.array): Mask from the test dataset.
            target (numpy.array): Target image.
            attrs (dict): Acquisition related information stored in the HDF5
                object.
            fname (str): File name.
            slice_num (int): Serial number of the slice.

        Returns:
            (tuple): tuple containing:
                image (torch.Tensor): Zero-filled input image.
                target (torch.Tensor): Target image converted to a torch
                    Tensor.
                mean (float): Mean value used for normalization.
                std (float): Standard deviation value used for normalization.
                fname (str): File name.
                slice_num (int): Serial number of the slice.
        """
        kspace = transforms.to_tensor(kspace)


        image = fastmri.ifft2c(kspace)

        # crop input to correct size
        if target is not None:
            crop_size = (target.shape[-2], target.shape[-1])
        else:
            crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

        # check for sFLAIR 203
        if image.shape[-2] < crop_size[1]:
            crop_size = (image.shape[-2], image.shape[-2])
   
        image = transforms.complex_center_crop(image, crop_size)

        #getLR
        imgfft = fastmri.fft2c(image)
        imgfft = transforms.complex_center_crop(imgfft,(160,160))
        LR_image = fastmri.ifft2c(imgfft)

        # absolute value
        LR_image = fastmri.complex_abs(LR_image)

        # normalize input
        LR_image, mean, std = transforms.normalize_instance(LR_image, eps=1e-11)
        LR_image = LR_image.clamp(-6, 6)

        # normalize target
        if target is not None:
            target = transforms.to_tensor(target)
            target = transforms.center_crop(target, crop_size)
            target = transforms.normalize(target, mean, std, eps=1e-11)
            target = target.clamp(-6, 6)
        else:
            target = torch.Tensor([0])

        return LR_image, target, mean, std, fname, slice_num
Example #24
0
    def __call__(self, kspace, mask, target, attrs, fname, slice_num):
        """
        Args:
            kspace (numpy.array): Input k-space of shape (num_coils, rows,
                cols, 2) for multi-coil data or (rows, cols, 2) for single coil
                data.
            mask (numpy.array): Mask from the test dataset.
            target (numpy.array): Target image.
            attrs (dict): Acquisition related information stored in the HDF5
                object.
            fname (str): File name.
            slice_num (int): Serial number of the slice.

        Returns:
            (tuple): tuple containing:
                image (torch.Tensor): Zero-filled input image.
                target (torch.Tensor): Target image converted to a torch
                    Tensor.
                mean (float): Mean value used for normalization.
                std (float): Standard deviation value used for normalization.
                fname (str): File name.
                slice_num (int): Serial number of the slice.
        """
        kspace = transforms.to_tensor(kspace)

        # apply mask
        if self.mask_func:
            seed = None if not self.use_seed else tuple(map(ord, fname))
            masked_kspace, mask = transforms.apply_mask(
                kspace, self.mask_func, seed)
        else:
            masked_kspace = kspace

        # inverse Fourier transform to get zero filled solution
        image = fastmri.ifft2c(masked_kspace)

        # crop input to correct size
        if target is not None:
            crop_size = (target.shape[-2], target.shape[-1])
        else:
            crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

        # check for FLAIR 203
        if image.shape[-2] < crop_size[1]:
            crop_size = (image.shape[-2], image.shape[-2])

        image = transforms.complex_center_crop(image, crop_size)

        # absolute value
        image = fastmri.complex_abs(image)

        # apply Root-Sum-of-Squares if multicoil data
        if self.which_challenge == "multicoil":
            image = fastmri.rss(image)

        # normalize input
        image, mean, std = transforms.normalize_instance(image, eps=1e-11)
        image = image.clamp(-6, 6)

        # normalize target
        if target is not None:
            target = transforms.to_tensor(target)
            target = transforms.center_crop(target, crop_size)
            target = transforms.normalize(target, mean, std, eps=1e-11)
            target = target.clamp(-6, 6)
        else:
            target = torch.Tensor([0])

        return image, target, mean, std, fname, slice_num
Example #25
0
    def __call__(
        self,
        kspace: np.ndarray,
        mask: np.ndarray,
        target: np.ndarray,
        attrs: Dict,
        fname: str,
        slice_num: int,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, str,
               int, float]:
        """
        Args:
            kspace: Input k-space of shape (num_coils, rows, cols) for
                multi-coil data or (rows, cols) for single coil data.
            mask: Mask from the test dataset.
            target: Target image.
            attrs: Acquisition related information stored in the HDF5 object.
            fname: File name.
            slice_num: Serial number of the slice.

        Returns:
            tuple containing:
                image: Zero-filled input image.
                target: Target image converted to a torch.Tensor.
                mean: Mean value used for normalization.
                std: Standard deviation value used for normalization.
                fname: File name.
                slice_num: Serial number of the slice.
        """
        kspace = to_tensor(kspace)

        # check for max value
        max_value = attrs["max"] if "max" in attrs.keys() else 0.0

        # apply mask
        if self.mask_func:
            seed = None if not self.use_seed else tuple(map(ord, fname))
            masked_kspace, mask = apply_mask(kspace, self.mask_func, seed)
        else:
            masked_kspace = kspace

        # inverse Fourier transform to get zero filled solution
        image = fastmri.ifft2c(masked_kspace)

        # crop input to correct size
        if target is not None:
            crop_size = (target.shape[-2], target.shape[-1])
        else:
            crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])

        # check for FLAIR 203
        if image.shape[-2] < crop_size[1]:
            crop_size = (image.shape[-2], image.shape[-2])

        image = complex_center_crop(image, crop_size)

        # absolute value
        image = fastmri.complex_abs(image)

        # apply Root-Sum-of-Squares if multicoil data
        if self.which_challenge == "multicoil":
            image = fastmri.rss(image)

        # normalize input
        image, mean, std = normalize_instance(image, eps=1e-11)
        image = image.clamp(-6, 6)

        # normalize target
        if target is not None:
            target = to_tensor(target)
            target = center_crop(target, crop_size)
            target = normalize(target, mean, std, eps=1e-11)
            target = target.clamp(-6, 6)
        else:
            target = torch.Tensor([0])

        return image, target, mean, std, fname, slice_num, max_value
Example #26
0
        dest = h5py.File(dest_path / fname.name, 'a')
        volume_kspace = orig['kspace'][()]
        kspace_list = []
        reconstruction_list = []

        total_slices = volume_kspace.shape[0]
        for i in range(total_slices // 2 - num_middle_slices // 2,
                       total_slices // 2 + num_middle_slices // 2 + 1):
            slice_kspace = volume_kspace[i]
            slice_kspace2 = to_tensor(
                slice_kspace)  # Convert from numpy array to pytorch tensor
            kspace_crop = complex_center_crop(slice_kspace2, (size, size))
            ift = fastmri.ifft2c(
                kspace_crop
            )  # Apply Inverse Fourier Transform to get the complex image
            reconstruction = fastmri.complex_abs(ift)
            kspace_list.append(tensor_to_complex_np(kspace_crop))
            reconstruction_list.append(reconstruction)

        stacked_kspace = np.stack(kspace_list)
        stacked_reconstruction_esc = np.stack(reconstruction_list)

        dest['kspace'] = stacked_kspace
        dest['reconstruction_esc'] = stacked_reconstruction_esc
        dest['ismrmrd_header'] = orig['ismrmrd_header'][()]

        dest.attrs['norm'] = np.linalg.norm(stacked_reconstruction_esc)
        dest.attrs['max'] = np.max(stacked_reconstruction_esc)

        dest.close()
        orig.close()