Example #1
0
def do_load_model():
    request_data = request.json
    request_data['servings'] = RuntimeConfig.SERVICE_DB.get_urls('servings')

    role = request_data['local']['role']
    party_id = request_data['local']['party_id']
    model_id = request_data['job_parameters']['model_id']
    model_version = request_data['job_parameters']['model_version']
    party_model_id = model_utils.gen_party_model_id(model_id, role, party_id)

    if get_base_config('enable_model_store', False):
        pipeline_model = pipelined_model.PipelinedModel(
            party_model_id, model_version)

        component_parameters = {
            'model_id': party_model_id,
            'model_version': model_version,
            'store_address': ServiceRegistry.MODEL_STORE_ADDRESS,
        }
        model_storage = get_model_storage(component_parameters)

        if pipeline_model.exists() and not model_storage.exists(
                **component_parameters):
            stat_logger.info(
                f'Uploading {pipeline_model.model_path} to model storage.')
            model_storage.store(**component_parameters)
        elif not pipeline_model.exists() and model_storage.exists(
                **component_parameters):
            stat_logger.info(
                f'Downloading {pipeline_model.model_path} from model storage.')
            model_storage.restore(**component_parameters)

    if not model_utils.check_if_deployed(role, party_id, model_id,
                                         model_version):
        return get_json_result(
            retcode=100,
            retmsg=
            "Only deployed models could be used to execute process of loading. "
            "Please deploy model before loading.")

    retcode, retmsg = publish_model.load_model(request_data)
    try:
        if not retcode:
            with DB.connection_context():
                model = MLModel.get_or_none(
                    MLModel.f_role == request_data["local"]["role"],
                    MLModel.f_party_id == request_data["local"]["party_id"],
                    MLModel.f_model_id == request_data["job_parameters"]
                    ["model_id"], MLModel.f_model_version ==
                    request_data["job_parameters"]["model_version"])
                if model:
                    model.f_loaded_times += 1
                    model.save()
    except Exception as modify_err:
        stat_logger.exception(modify_err)

    operation_record(request_data, "load",
                     "success" if not retcode else "failed")
    return get_json_result(retcode=retcode, retmsg=retmsg)
Example #2
0
def do_load_model():
    request_data = request.json
    adapter_servings_config(request_data)
    if not check_if_deployed(
            role=request_data['local']['role'],
            party_id=request_data['local']['party_id'],
            model_id=request_data['job_parameters']['model_id'],
            model_version=request_data['job_parameters']['model_version']):
        return get_json_result(
            retcode=100,
            retmsg=
            "Only deployed models could be used to execute process of loading. "
            "Please deploy model before loading.")
    retcode, retmsg = publish_model.load_model(config_data=request_data)
    try:
        if not retcode:
            with DB.connection_context():
                model = MLModel.get_or_none(
                    MLModel.f_role == request_data.get("local").get("role"),
                    MLModel.f_party_id == request_data.get("local").get(
                        "party_id"), MLModel.f_model_id == request_data.get(
                            "job_parameters").get("model_id"),
                    MLModel.f_model_version == request_data.get(
                        "job_parameters").get("model_version"))
                if model:
                    count = model.f_loaded_times
                    model.f_loaded_times = count + 1
                    model.save()
    except Exception as modify_err:
        stat_logger.exception(modify_err)

    try:
        party_model_id = gen_party_model_id(
            role=request_data.get("local").get("role"),
            party_id=request_data.get("local").get("party_id"),
            model_id=request_data.get("job_parameters").get("model_id"))
        src_model_path = os.path.join(
            file_utils.get_project_base_directory(), 'model_local_cache',
            party_model_id,
            request_data.get("job_parameters").get("model_version"))
        dst_model_path = os.path.join(
            file_utils.get_project_base_directory(), 'loaded_model_backup',
            party_model_id,
            request_data.get("job_parameters").get("model_version"))
        if not os.path.exists(dst_model_path):
            shutil.copytree(src=src_model_path, dst=dst_model_path)
    except Exception as copy_err:
        stat_logger.exception(copy_err)
    operation_record(request_data, "load",
                     "success" if not retcode else "failed")
    return get_json_result(retcode=retcode, retmsg=retmsg)
Example #3
0
    def submit(cls, job_data, job_id=None):
        if not job_id:
            job_id = job_utils.generate_job_id()
        schedule_logger(job_id).info('submit job, job_id {}, body {}'.format(
            job_id, job_data))
        job_dsl = job_data.get('job_dsl', {})
        job_runtime_conf = job_data.get('job_runtime_conf', {})
        job_utils.check_job_runtime_conf(job_runtime_conf)
        authentication_utils.check_constraint(job_runtime_conf, job_dsl)

        job_initiator = job_runtime_conf['initiator']
        conf_adapter = JobRuntimeConfigAdapter(job_runtime_conf)
        common_job_parameters = conf_adapter.get_common_parameters()

        if common_job_parameters.job_type != 'predict':
            # generate job model info
            common_job_parameters.model_id = model_utils.gen_model_id(
                job_runtime_conf['role'])
            common_job_parameters.model_version = job_id
            train_runtime_conf = {}
        else:
            # check predict job parameters
            detect_utils.check_config(common_job_parameters.to_dict(),
                                      ['model_id', 'model_version'])
            # get inference dsl from pipeline model as job dsl
            tracker = Tracker(
                job_id=job_id,
                role=job_initiator['role'],
                party_id=job_initiator['party_id'],
                model_id=common_job_parameters.model_id,
                model_version=common_job_parameters.model_version)
            pipeline_model = tracker.get_output_model('pipeline')
            train_runtime_conf = json_loads(
                pipeline_model['Pipeline'].train_runtime_conf)
            if not model_utils.check_if_deployed(
                    role=job_initiator['role'],
                    party_id=job_initiator['party_id'],
                    model_id=common_job_parameters.model_id,
                    model_version=common_job_parameters.model_version):
                raise Exception(
                    f"Model {common_job_parameters.model_id} {common_job_parameters.model_version} has not been deployed yet."
                )
            job_dsl = json_loads(pipeline_model['Pipeline'].inference_dsl)

        job = Job()
        job.f_job_id = job_id
        job.f_dsl = job_dsl
        job.f_train_runtime_conf = train_runtime_conf
        job.f_roles = job_runtime_conf['role']
        job.f_work_mode = common_job_parameters.work_mode
        job.f_initiator_role = job_initiator['role']
        job.f_initiator_party_id = job_initiator['party_id']
        job.f_role = job_initiator['role']
        job.f_party_id = job_initiator['party_id']

        path_dict = job_utils.save_job_conf(
            job_id=job_id,
            role=job.f_initiator_role,
            job_dsl=job_dsl,
            job_runtime_conf=job_runtime_conf,
            job_runtime_conf_on_party={},
            train_runtime_conf=train_runtime_conf,
            pipeline_dsl=None)

        if job.f_initiator_party_id not in job_runtime_conf['role'][
                job.f_initiator_role]:
            schedule_logger(job_id).info("initiator party id error:{}".format(
                job.f_initiator_party_id))
            raise Exception("initiator party id error {}".format(
                job.f_initiator_party_id))

        # create common parameters on initiator
        JobController.backend_compatibility(
            job_parameters=common_job_parameters)
        JobController.adapt_job_parameters(
            role=job.f_initiator_role,
            job_parameters=common_job_parameters,
            create_initiator_baseline=True)

        job.f_runtime_conf = conf_adapter.update_common_parameters(
            common_parameters=common_job_parameters)
        dsl_parser = schedule_utils.get_job_dsl_parser(
            dsl=job.f_dsl,
            runtime_conf=job.f_runtime_conf,
            train_runtime_conf=job.f_train_runtime_conf)

        # initiator runtime conf as template
        job.f_runtime_conf_on_party = job.f_runtime_conf.copy()
        job.f_runtime_conf_on_party[
            "job_parameters"] = common_job_parameters.to_dict()

        if common_job_parameters.work_mode == WorkMode.CLUSTER:
            # Save the status information of all participants in the initiator for scheduling
            for role, party_ids in job.f_roles.items():
                for party_id in party_ids:
                    if role == job.f_initiator_role and party_id == job.f_initiator_party_id:
                        continue
                    JobController.initialize_tasks(job_id, role, party_id,
                                                   False, job.f_initiator_role,
                                                   job.f_initiator_party_id,
                                                   common_job_parameters,
                                                   dsl_parser)

        status_code, response = FederatedScheduler.create_job(job=job)
        if status_code != FederatedSchedulingStatusCode.SUCCESS:
            job.f_status = JobStatus.FAILED
            job.f_tag = "submit_failed"
            FederatedScheduler.sync_job_status(job=job)
            raise Exception("create job failed", response)

        schedule_logger(job_id).info(
            'submit job successfully, job id is {}, model id is {}'.format(
                job.f_job_id, common_job_parameters.model_id))
        logs_directory = job_utils.get_job_log_directory(job_id)
        submit_result = {
            "job_id":
            job_id,
            "model_info": {
                "model_id": common_job_parameters.model_id,
                "model_version": common_job_parameters.model_version
            },
            "logs_directory":
            logs_directory,
            "board_url":
            job_utils.get_board_url(job_id, job_initiator['role'],
                                    job_initiator['party_id'])
        }
        submit_result.update(path_dict)
        return submit_result
Example #4
0
    def submit(cls, submit_job_conf: JobConfigurationBase, job_id: str = None):
        if not job_id:
            job_id = job_utils.generate_job_id()
        submit_result = {"job_id": job_id}
        schedule_logger(job_id).info(
            f"submit job, body {submit_job_conf.to_dict()}")
        try:
            dsl = submit_job_conf.dsl
            runtime_conf = deepcopy(submit_job_conf.runtime_conf)
            job_utils.check_job_runtime_conf(runtime_conf)
            authentication_utils.check_constraint(runtime_conf, dsl)
            job_initiator = runtime_conf["initiator"]
            conf_adapter = JobRuntimeConfigAdapter(runtime_conf)
            common_job_parameters = conf_adapter.get_common_parameters()

            if common_job_parameters.job_type != "predict":
                # generate job model info
                conf_version = schedule_utils.get_conf_version(runtime_conf)
                if conf_version != 2:
                    raise Exception(
                        "only the v2 version runtime conf is supported")
                common_job_parameters.model_id = model_utils.gen_model_id(
                    runtime_conf["role"])
                common_job_parameters.model_version = job_id
                train_runtime_conf = {}
            else:
                # check predict job parameters
                detect_utils.check_config(common_job_parameters.to_dict(),
                                          ["model_id", "model_version"])
                # get inference dsl from pipeline model as job dsl
                tracker = Tracker(
                    job_id=job_id,
                    role=job_initiator["role"],
                    party_id=job_initiator["party_id"],
                    model_id=common_job_parameters.model_id,
                    model_version=common_job_parameters.model_version)
                pipeline_model = tracker.get_pipeline_model()
                train_runtime_conf = json_loads(
                    pipeline_model.train_runtime_conf)
                if not model_utils.check_if_deployed(
                        role=job_initiator["role"],
                        party_id=job_initiator["party_id"],
                        model_id=common_job_parameters.model_id,
                        model_version=common_job_parameters.model_version):
                    raise Exception(
                        f"Model {common_job_parameters.model_id} {common_job_parameters.model_version} has not been deployed yet."
                    )
                dsl = json_loads(pipeline_model.inference_dsl)
            # dsl = ProviderManager.fill_fate_flow_provider(dsl)

            job = Job()
            job.f_job_id = job_id
            job.f_dsl = dsl
            job.f_train_runtime_conf = train_runtime_conf
            job.f_roles = runtime_conf["role"]
            job.f_initiator_role = job_initiator["role"]
            job.f_initiator_party_id = job_initiator["party_id"]
            job.f_role = job_initiator["role"]
            job.f_party_id = job_initiator["party_id"]

            path_dict = job_utils.save_job_conf(
                job_id=job_id,
                role=job.f_initiator_role,
                party_id=job.f_initiator_party_id,
                dsl=dsl,
                runtime_conf=runtime_conf,
                runtime_conf_on_party={},
                train_runtime_conf=train_runtime_conf,
                pipeline_dsl=None)

            if job.f_initiator_party_id not in runtime_conf["role"][
                    job.f_initiator_role]:
                msg = f"initiator party id {job.f_initiator_party_id} not in roles {runtime_conf['role']}"
                schedule_logger(job_id).info(msg)
                raise Exception(msg)

            # create common parameters on initiator
            JobController.create_common_job_parameters(
                job_id=job.f_job_id,
                initiator_role=job.f_initiator_role,
                common_job_parameters=common_job_parameters)
            job.f_runtime_conf = conf_adapter.update_common_parameters(
                common_parameters=common_job_parameters)
            dsl_parser = schedule_utils.get_job_dsl_parser(
                dsl=job.f_dsl,
                runtime_conf=job.f_runtime_conf,
                train_runtime_conf=job.f_train_runtime_conf)

            # initiator runtime conf as template
            job.f_runtime_conf_on_party = job.f_runtime_conf.copy()
            job.f_runtime_conf_on_party[
                "job_parameters"] = common_job_parameters.to_dict()

            # inherit job
            job.f_inheritance_info = common_job_parameters.inheritance_info
            job.f_inheritance_status = JobInheritanceStatus.WAITING if common_job_parameters.inheritance_info else JobInheritanceStatus.PASS
            if job.f_inheritance_info:
                inheritance_jobs = JobSaver.query_job(
                    job_id=job.f_inheritance_info.get("job_id"),
                    role=job_initiator["role"],
                    party_id=job_initiator["party_id"])
                inheritance_tasks = JobSaver.query_task(
                    job_id=job.f_inheritance_info.get("job_id"),
                    role=job_initiator["role"],
                    party_id=job_initiator["party_id"],
                    only_latest=True)
                job_utils.check_job_inheritance_parameters(
                    job, inheritance_jobs, inheritance_tasks)

            status_code, response = FederatedScheduler.create_job(job=job)
            if status_code != FederatedSchedulingStatusCode.SUCCESS:
                job.f_status = JobStatus.FAILED
                job.f_tag = "submit_failed"
                FederatedScheduler.sync_job_status(job=job)
                raise Exception("create job failed", response)
            else:
                need_run_components = {}
                for role in response:
                    need_run_components[role] = {}
                    for party, res in response[role].items():
                        need_run_components[role][party] = [
                            name for name, value in response[role][party]
                            ["data"]["components"].items()
                            if value["need_run"] is True
                        ]
                if common_job_parameters.federated_mode == FederatedMode.MULTIPLE:
                    # create the task holder in db to record information of all participants in the initiator for scheduling
                    for role, party_ids in job.f_roles.items():
                        for party_id in party_ids:
                            if role == job.f_initiator_role and party_id == job.f_initiator_party_id:
                                continue
                            if not need_run_components[role][party_id]:
                                continue
                            JobController.initialize_tasks(
                                job_id=job_id,
                                role=role,
                                party_id=party_id,
                                run_on_this_party=False,
                                initiator_role=job.f_initiator_role,
                                initiator_party_id=job.f_initiator_party_id,
                                job_parameters=common_job_parameters,
                                dsl_parser=dsl_parser,
                                components=need_run_components[role][party_id])
                job.f_status = JobStatus.WAITING
                status_code, response = FederatedScheduler.sync_job_status(
                    job=job)
                if status_code != FederatedSchedulingStatusCode.SUCCESS:
                    raise Exception("set job to waiting status failed")

            schedule_logger(job_id).info(
                f"submit job successfully, job id is {job.f_job_id}, model id is {common_job_parameters.model_id}"
            )
            logs_directory = job_utils.get_job_log_directory(job_id)
            result = {
                "code":
                RetCode.SUCCESS,
                "message":
                "success",
                "model_info": {
                    "model_id": common_job_parameters.model_id,
                    "model_version": common_job_parameters.model_version
                },
                "logs_directory":
                logs_directory,
                "board_url":
                job_utils.get_board_url(job_id, job_initiator["role"],
                                        job_initiator["party_id"])
            }
            warn_parameter = JobRuntimeConfigAdapter(
                submit_job_conf.runtime_conf).check_removed_parameter()
            if warn_parameter:
                result[
                    "message"] = f"[WARN]{warn_parameter} is removed,it does not take effect!"
            submit_result.update(result)
            submit_result.update(path_dict)
        except Exception as e:
            submit_result["code"] = RetCode.OPERATING_ERROR
            submit_result["message"] = exception_to_trace_string(e)
            schedule_logger(job_id).exception(e)
        return submit_result