def do_load_model(): request_data = request.json request_data['servings'] = RuntimeConfig.SERVICE_DB.get_urls('servings') role = request_data['local']['role'] party_id = request_data['local']['party_id'] model_id = request_data['job_parameters']['model_id'] model_version = request_data['job_parameters']['model_version'] party_model_id = model_utils.gen_party_model_id(model_id, role, party_id) if get_base_config('enable_model_store', False): pipeline_model = pipelined_model.PipelinedModel( party_model_id, model_version) component_parameters = { 'model_id': party_model_id, 'model_version': model_version, 'store_address': ServiceRegistry.MODEL_STORE_ADDRESS, } model_storage = get_model_storage(component_parameters) if pipeline_model.exists() and not model_storage.exists( **component_parameters): stat_logger.info( f'Uploading {pipeline_model.model_path} to model storage.') model_storage.store(**component_parameters) elif not pipeline_model.exists() and model_storage.exists( **component_parameters): stat_logger.info( f'Downloading {pipeline_model.model_path} from model storage.') model_storage.restore(**component_parameters) if not model_utils.check_if_deployed(role, party_id, model_id, model_version): return get_json_result( retcode=100, retmsg= "Only deployed models could be used to execute process of loading. " "Please deploy model before loading.") retcode, retmsg = publish_model.load_model(request_data) try: if not retcode: with DB.connection_context(): model = MLModel.get_or_none( MLModel.f_role == request_data["local"]["role"], MLModel.f_party_id == request_data["local"]["party_id"], MLModel.f_model_id == request_data["job_parameters"] ["model_id"], MLModel.f_model_version == request_data["job_parameters"]["model_version"]) if model: model.f_loaded_times += 1 model.save() except Exception as modify_err: stat_logger.exception(modify_err) operation_record(request_data, "load", "success" if not retcode else "failed") return get_json_result(retcode=retcode, retmsg=retmsg)
def do_load_model(): request_data = request.json adapter_servings_config(request_data) if not check_if_deployed( role=request_data['local']['role'], party_id=request_data['local']['party_id'], model_id=request_data['job_parameters']['model_id'], model_version=request_data['job_parameters']['model_version']): return get_json_result( retcode=100, retmsg= "Only deployed models could be used to execute process of loading. " "Please deploy model before loading.") retcode, retmsg = publish_model.load_model(config_data=request_data) try: if not retcode: with DB.connection_context(): model = MLModel.get_or_none( MLModel.f_role == request_data.get("local").get("role"), MLModel.f_party_id == request_data.get("local").get( "party_id"), MLModel.f_model_id == request_data.get( "job_parameters").get("model_id"), MLModel.f_model_version == request_data.get( "job_parameters").get("model_version")) if model: count = model.f_loaded_times model.f_loaded_times = count + 1 model.save() except Exception as modify_err: stat_logger.exception(modify_err) try: party_model_id = gen_party_model_id( role=request_data.get("local").get("role"), party_id=request_data.get("local").get("party_id"), model_id=request_data.get("job_parameters").get("model_id")) src_model_path = os.path.join( file_utils.get_project_base_directory(), 'model_local_cache', party_model_id, request_data.get("job_parameters").get("model_version")) dst_model_path = os.path.join( file_utils.get_project_base_directory(), 'loaded_model_backup', party_model_id, request_data.get("job_parameters").get("model_version")) if not os.path.exists(dst_model_path): shutil.copytree(src=src_model_path, dst=dst_model_path) except Exception as copy_err: stat_logger.exception(copy_err) operation_record(request_data, "load", "success" if not retcode else "failed") return get_json_result(retcode=retcode, retmsg=retmsg)
def submit(cls, job_data, job_id=None): if not job_id: job_id = job_utils.generate_job_id() schedule_logger(job_id).info('submit job, job_id {}, body {}'.format( job_id, job_data)) job_dsl = job_data.get('job_dsl', {}) job_runtime_conf = job_data.get('job_runtime_conf', {}) job_utils.check_job_runtime_conf(job_runtime_conf) authentication_utils.check_constraint(job_runtime_conf, job_dsl) job_initiator = job_runtime_conf['initiator'] conf_adapter = JobRuntimeConfigAdapter(job_runtime_conf) common_job_parameters = conf_adapter.get_common_parameters() if common_job_parameters.job_type != 'predict': # generate job model info common_job_parameters.model_id = model_utils.gen_model_id( job_runtime_conf['role']) common_job_parameters.model_version = job_id train_runtime_conf = {} else: # check predict job parameters detect_utils.check_config(common_job_parameters.to_dict(), ['model_id', 'model_version']) # get inference dsl from pipeline model as job dsl tracker = Tracker( job_id=job_id, role=job_initiator['role'], party_id=job_initiator['party_id'], model_id=common_job_parameters.model_id, model_version=common_job_parameters.model_version) pipeline_model = tracker.get_output_model('pipeline') train_runtime_conf = json_loads( pipeline_model['Pipeline'].train_runtime_conf) if not model_utils.check_if_deployed( role=job_initiator['role'], party_id=job_initiator['party_id'], model_id=common_job_parameters.model_id, model_version=common_job_parameters.model_version): raise Exception( f"Model {common_job_parameters.model_id} {common_job_parameters.model_version} has not been deployed yet." ) job_dsl = json_loads(pipeline_model['Pipeline'].inference_dsl) job = Job() job.f_job_id = job_id job.f_dsl = job_dsl job.f_train_runtime_conf = train_runtime_conf job.f_roles = job_runtime_conf['role'] job.f_work_mode = common_job_parameters.work_mode job.f_initiator_role = job_initiator['role'] job.f_initiator_party_id = job_initiator['party_id'] job.f_role = job_initiator['role'] job.f_party_id = job_initiator['party_id'] path_dict = job_utils.save_job_conf( job_id=job_id, role=job.f_initiator_role, job_dsl=job_dsl, job_runtime_conf=job_runtime_conf, job_runtime_conf_on_party={}, train_runtime_conf=train_runtime_conf, pipeline_dsl=None) if job.f_initiator_party_id not in job_runtime_conf['role'][ job.f_initiator_role]: schedule_logger(job_id).info("initiator party id error:{}".format( job.f_initiator_party_id)) raise Exception("initiator party id error {}".format( job.f_initiator_party_id)) # create common parameters on initiator JobController.backend_compatibility( job_parameters=common_job_parameters) JobController.adapt_job_parameters( role=job.f_initiator_role, job_parameters=common_job_parameters, create_initiator_baseline=True) job.f_runtime_conf = conf_adapter.update_common_parameters( common_parameters=common_job_parameters) dsl_parser = schedule_utils.get_job_dsl_parser( dsl=job.f_dsl, runtime_conf=job.f_runtime_conf, train_runtime_conf=job.f_train_runtime_conf) # initiator runtime conf as template job.f_runtime_conf_on_party = job.f_runtime_conf.copy() job.f_runtime_conf_on_party[ "job_parameters"] = common_job_parameters.to_dict() if common_job_parameters.work_mode == WorkMode.CLUSTER: # Save the status information of all participants in the initiator for scheduling for role, party_ids in job.f_roles.items(): for party_id in party_ids: if role == job.f_initiator_role and party_id == job.f_initiator_party_id: continue JobController.initialize_tasks(job_id, role, party_id, False, job.f_initiator_role, job.f_initiator_party_id, common_job_parameters, dsl_parser) status_code, response = FederatedScheduler.create_job(job=job) if status_code != FederatedSchedulingStatusCode.SUCCESS: job.f_status = JobStatus.FAILED job.f_tag = "submit_failed" FederatedScheduler.sync_job_status(job=job) raise Exception("create job failed", response) schedule_logger(job_id).info( 'submit job successfully, job id is {}, model id is {}'.format( job.f_job_id, common_job_parameters.model_id)) logs_directory = job_utils.get_job_log_directory(job_id) submit_result = { "job_id": job_id, "model_info": { "model_id": common_job_parameters.model_id, "model_version": common_job_parameters.model_version }, "logs_directory": logs_directory, "board_url": job_utils.get_board_url(job_id, job_initiator['role'], job_initiator['party_id']) } submit_result.update(path_dict) return submit_result
def submit(cls, submit_job_conf: JobConfigurationBase, job_id: str = None): if not job_id: job_id = job_utils.generate_job_id() submit_result = {"job_id": job_id} schedule_logger(job_id).info( f"submit job, body {submit_job_conf.to_dict()}") try: dsl = submit_job_conf.dsl runtime_conf = deepcopy(submit_job_conf.runtime_conf) job_utils.check_job_runtime_conf(runtime_conf) authentication_utils.check_constraint(runtime_conf, dsl) job_initiator = runtime_conf["initiator"] conf_adapter = JobRuntimeConfigAdapter(runtime_conf) common_job_parameters = conf_adapter.get_common_parameters() if common_job_parameters.job_type != "predict": # generate job model info conf_version = schedule_utils.get_conf_version(runtime_conf) if conf_version != 2: raise Exception( "only the v2 version runtime conf is supported") common_job_parameters.model_id = model_utils.gen_model_id( runtime_conf["role"]) common_job_parameters.model_version = job_id train_runtime_conf = {} else: # check predict job parameters detect_utils.check_config(common_job_parameters.to_dict(), ["model_id", "model_version"]) # get inference dsl from pipeline model as job dsl tracker = Tracker( job_id=job_id, role=job_initiator["role"], party_id=job_initiator["party_id"], model_id=common_job_parameters.model_id, model_version=common_job_parameters.model_version) pipeline_model = tracker.get_pipeline_model() train_runtime_conf = json_loads( pipeline_model.train_runtime_conf) if not model_utils.check_if_deployed( role=job_initiator["role"], party_id=job_initiator["party_id"], model_id=common_job_parameters.model_id, model_version=common_job_parameters.model_version): raise Exception( f"Model {common_job_parameters.model_id} {common_job_parameters.model_version} has not been deployed yet." ) dsl = json_loads(pipeline_model.inference_dsl) # dsl = ProviderManager.fill_fate_flow_provider(dsl) job = Job() job.f_job_id = job_id job.f_dsl = dsl job.f_train_runtime_conf = train_runtime_conf job.f_roles = runtime_conf["role"] job.f_initiator_role = job_initiator["role"] job.f_initiator_party_id = job_initiator["party_id"] job.f_role = job_initiator["role"] job.f_party_id = job_initiator["party_id"] path_dict = job_utils.save_job_conf( job_id=job_id, role=job.f_initiator_role, party_id=job.f_initiator_party_id, dsl=dsl, runtime_conf=runtime_conf, runtime_conf_on_party={}, train_runtime_conf=train_runtime_conf, pipeline_dsl=None) if job.f_initiator_party_id not in runtime_conf["role"][ job.f_initiator_role]: msg = f"initiator party id {job.f_initiator_party_id} not in roles {runtime_conf['role']}" schedule_logger(job_id).info(msg) raise Exception(msg) # create common parameters on initiator JobController.create_common_job_parameters( job_id=job.f_job_id, initiator_role=job.f_initiator_role, common_job_parameters=common_job_parameters) job.f_runtime_conf = conf_adapter.update_common_parameters( common_parameters=common_job_parameters) dsl_parser = schedule_utils.get_job_dsl_parser( dsl=job.f_dsl, runtime_conf=job.f_runtime_conf, train_runtime_conf=job.f_train_runtime_conf) # initiator runtime conf as template job.f_runtime_conf_on_party = job.f_runtime_conf.copy() job.f_runtime_conf_on_party[ "job_parameters"] = common_job_parameters.to_dict() # inherit job job.f_inheritance_info = common_job_parameters.inheritance_info job.f_inheritance_status = JobInheritanceStatus.WAITING if common_job_parameters.inheritance_info else JobInheritanceStatus.PASS if job.f_inheritance_info: inheritance_jobs = JobSaver.query_job( job_id=job.f_inheritance_info.get("job_id"), role=job_initiator["role"], party_id=job_initiator["party_id"]) inheritance_tasks = JobSaver.query_task( job_id=job.f_inheritance_info.get("job_id"), role=job_initiator["role"], party_id=job_initiator["party_id"], only_latest=True) job_utils.check_job_inheritance_parameters( job, inheritance_jobs, inheritance_tasks) status_code, response = FederatedScheduler.create_job(job=job) if status_code != FederatedSchedulingStatusCode.SUCCESS: job.f_status = JobStatus.FAILED job.f_tag = "submit_failed" FederatedScheduler.sync_job_status(job=job) raise Exception("create job failed", response) else: need_run_components = {} for role in response: need_run_components[role] = {} for party, res in response[role].items(): need_run_components[role][party] = [ name for name, value in response[role][party] ["data"]["components"].items() if value["need_run"] is True ] if common_job_parameters.federated_mode == FederatedMode.MULTIPLE: # create the task holder in db to record information of all participants in the initiator for scheduling for role, party_ids in job.f_roles.items(): for party_id in party_ids: if role == job.f_initiator_role and party_id == job.f_initiator_party_id: continue if not need_run_components[role][party_id]: continue JobController.initialize_tasks( job_id=job_id, role=role, party_id=party_id, run_on_this_party=False, initiator_role=job.f_initiator_role, initiator_party_id=job.f_initiator_party_id, job_parameters=common_job_parameters, dsl_parser=dsl_parser, components=need_run_components[role][party_id]) job.f_status = JobStatus.WAITING status_code, response = FederatedScheduler.sync_job_status( job=job) if status_code != FederatedSchedulingStatusCode.SUCCESS: raise Exception("set job to waiting status failed") schedule_logger(job_id).info( f"submit job successfully, job id is {job.f_job_id}, model id is {common_job_parameters.model_id}" ) logs_directory = job_utils.get_job_log_directory(job_id) result = { "code": RetCode.SUCCESS, "message": "success", "model_info": { "model_id": common_job_parameters.model_id, "model_version": common_job_parameters.model_version }, "logs_directory": logs_directory, "board_url": job_utils.get_board_url(job_id, job_initiator["role"], job_initiator["party_id"]) } warn_parameter = JobRuntimeConfigAdapter( submit_job_conf.runtime_conf).check_removed_parameter() if warn_parameter: result[ "message"] = f"[WARN]{warn_parameter} is removed,it does not take effect!" submit_result.update(result) submit_result.update(path_dict) except Exception as e: submit_result["code"] = RetCode.OPERATING_ERROR submit_result["message"] = exception_to_trace_string(e) schedule_logger(job_id).exception(e) return submit_result