Example #1
0
    def add_diagnostic(self, diagnostic):
        # Call method of parent class
        PICMI_Simulation.add_diagnostic(self, diagnostic)

        # Handle diagnostic
        if diagnostic.step_min is None:
            iteration_min = 0
        else:
            iteration_min = diagnostic.step_min
        if diagnostic.step_max is None:
            iteration_max = np.inf
        else:
            iteration_max = diagnostic.step_max
        # Register field diagnostic
        if type(diagnostic) == PICMI_FieldDiagnostic:
            if diagnostic.data_list is None:
                data_list = ['rho', 'E', 'B', 'J']
            else:
                data_list = diagnostic.data_list
            diag = FieldDiagnostic(period=diagnostic.period,
                                   fldobject=self.fbpic_sim.fld,
                                   comm=self.fbpic_sim.comm,
                                   fieldtypes=data_list,
                                   write_dir=diagnostic.write_dir,
                                   iteration_min=iteration_min,
                                   iteration_max=iteration_max)
        # Register particle diagnostic
        elif type(diagnostic) == PICMI_ParticleDiagnostic:
            species_dict = {}
            for s in diagnostic.species:
                if s.name is None:
                    raise ValueError('When using a species in a diagnostic, '
                                     'its name must be set.')
                species_dict[s.name] = s.fbpic_species
            if diagnostic.data_list is None:
                data_list = ['position', 'momentum', 'weighting']
            else:
                data_list = diagnostic.data_list
            diag = ParticleDiagnostic(period=diagnostic.period,
                                      species=species_dict,
                                      comm=self.fbpic_sim.comm,
                                      particle_data=data_list,
                                      write_dir=diagnostic.write_dir,
                                      iteration_min=iteration_min,
                                      iteration_max=iteration_max)

        # Add it to the FBPIC simulation
        self.fbpic_sim.diags.append(diag)
              gamma_boost=boost.gamma0)

    # Convert parameter to boosted frame
    v_window_boosted, = boost.velocity([v_window])
    # Configure the moving window
    sim.set_moving_window(v=v_window_boosted)

    # Add a field diagnostic
    sim.diags = [
        # Diagnostics in the boosted frame
        FieldDiagnostic(dt_period=dt_boosted_diag_period,
                        fldobject=sim.fld,
                        comm=sim.comm),
        ParticleDiagnostic(dt_period=dt_boosted_diag_period,
                           species={
                               "electrons": sim.ptcl[0],
                               "bunch": sim.ptcl[2]
                           },
                           comm=sim.comm),
        # Diagnostics in the lab frame (back-transformed)
        BackTransformedFieldDiagnostic(zmin,
                                       zmax,
                                       v_window,
                                       dt_lab_diag_period,
                                       N_lab_diag,
                                       boost.gamma0,
                                       fieldtypes=['rho', 'E', 'B'],
                                       period=write_period,
                                       fldobject=sim.fld,
                                       comm=sim.comm),
        BackTransformedParticleDiagnostic(zmin,
                                          zmax,
Example #3
0
def run_simulation(gamma_boost, use_separate_electron_species):
    """
    Run a simulation with a laser pulse going through a gas jet of ionizable
    N5+ atoms, and check the fraction of atoms that are in the N5+ state.

    Parameters
    ----------
    gamma_boost: float
        The Lorentz factor of the frame in which the simulation is carried out.
    use_separate_electron_species: bool
        Whether to use separate electron species for each level, or
        a single electron species for all levels.
    """
    # The simulation box
    zmax_lab = 20.e-6  # Length of the box along z (meters)
    zmin_lab = 0.e-6
    Nr = 3  # Number of gridpoints along r
    rmax = 10.e-6  # Length of the box along r (meters)
    Nm = 2  # Number of modes used

    # The particles of the plasma
    p_zmin = 5.e-6  # Position of the beginning of the plasma (meters)
    p_zmax = 15.e-6
    p_rmin = 0.  # Minimal radial position of the plasma (meters)
    p_rmax = 100.e-6  # Maximal radial position of the plasma (meters)
    n_atoms = 0.2  # The atomic density is chosen very low,
    # to avoid collective effects
    p_nz = 2  # Number of particles per cell along z
    p_nr = 1  # Number of particles per cell along r
    p_nt = 4  # Number of particles per cell along theta

    # Boosted frame
    boost = BoostConverter(gamma_boost)
    # Boost the different quantities
    beta_boost = np.sqrt(1. - 1. / gamma_boost**2)
    zmin, zmax = boost.static_length([zmin_lab, zmax_lab])
    p_zmin, p_zmax = boost.static_length([p_zmin, p_zmax])
    n_atoms, = boost.static_density([n_atoms])
    # Increase the number of particles per cell in order to keep sufficient
    # statistics for the evaluation of the ionization fraction
    if gamma_boost > 1:
        p_nz = int(2 * gamma_boost * (1 + beta_boost) * p_nz)

    # The laser
    a0 = 1.8  # Laser amplitude
    lambda0_lab = 0.8e-6  # Laser wavelength
    # Boost the laser wavelength before calculating the laser amplitude
    lambda0, = boost.copropag_length([lambda0_lab], beta_object=1.)
    # Duration and initial position of the laser
    ctau = 10. * lambda0
    z0 = -2 * ctau
    # Calculate laser amplitude
    omega = 2 * np.pi * c / lambda0
    E0 = a0 * m_e * c * omega / e
    B0 = E0 / c

    def laser_func(F, x, y, z, t, amplitude, length_scale):
        """
        Function that describes a Gaussian laser with infinite waist
        """
        return( F + amplitude * math.cos( 2*np.pi*(z-c*t)/lambda0 ) * \
                math.exp( - (z - c*t - z0)**2/ctau**2 ) )

    # Resolution and number of timesteps
    dz = lambda0 / 16.
    dt = dz / c
    Nz = int((zmax - zmin) / dz) + 1
    N_step = int(
        (2. * 40. * lambda0 + zmax - zmin) / (dz * (1 + beta_boost))) + 1

    # Get the speed of the plasma
    uz_m, = boost.longitudinal_momentum([0.])
    v_plasma, = boost.velocity([0.])

    # The diagnostics
    diag_period = N_step - 1  # Period of the diagnostics in number of timesteps

    # Initial ionization level of the Nitrogen atoms
    level_start = 2
    # Initialize the simulation object, with the neutralizing electrons
    # No particles are created because we do not pass the density
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     zmin=zmin,
                     v_comoving=v_plasma,
                     use_galilean=False,
                     boundaries='open',
                     use_cuda=use_cuda)

    # Add the charge-neutralizing electrons
    elec = sim.add_new_species(q=-e,
                               m=m_e,
                               n=level_start * n_atoms,
                               p_nz=p_nz,
                               p_nr=p_nr,
                               p_nt=p_nt,
                               p_zmin=p_zmin,
                               p_zmax=p_zmax,
                               p_rmin=p_rmin,
                               p_rmax=p_rmax,
                               continuous_injection=False,
                               uz_m=uz_m)
    # Add the N atoms
    ions = sim.add_new_species(q=0,
                               m=14. * m_p,
                               n=n_atoms,
                               p_nz=p_nz,
                               p_nr=p_nr,
                               p_nt=p_nt,
                               p_zmin=p_zmin,
                               p_zmax=p_zmax,
                               p_rmin=p_rmin,
                               p_rmax=p_rmax,
                               continuous_injection=False,
                               uz_m=uz_m)
    # Add the target electrons
    if use_separate_electron_species:
        # Use a dictionary of electron species: one per ionizable level
        target_species = {}
        level_max = 6  # N can go up to N7+, but here we stop at N6+
        for i_level in range(level_start, level_max):
            target_species[i_level] = sim.add_new_species(q=-e, m=m_e)
    else:
        # Use the pre-existing, charge-neutralizing electrons
        target_species = elec
        level_max = None  # Default is going up to N7+
    # Define ionization
    ions.make_ionizable(element='N',
                        level_start=level_start,
                        level_max=level_max,
                        target_species=target_species)
    # Set the moving window
    sim.set_moving_window(v=v_plasma)

    # Add a laser to the fields of the simulation (external fields)
    sim.external_fields = [
        ExternalField(laser_func, 'Ex', E0, 0.),
        ExternalField(laser_func, 'By', B0, 0.)
    ]

    # Add a particle diagnostic
    sim.diags = [
        ParticleDiagnostic(
            diag_period,
            {"ions": ions},
            particle_data=["position", "gamma", "weighting", "E", "B"],
            # Test output of fields and gamma for standard
            # (non-boosted) particle diagnostics
            write_dir='tests/diags',
            comm=sim.comm)
    ]
    if gamma_boost > 1:
        T_sim_lab = (2. * 40. * lambda0_lab + zmax_lab - zmin_lab) / c
        sim.diags.append(
            BackTransformedParticleDiagnostic(zmin_lab,
                                              zmax_lab,
                                              v_lab=0.,
                                              dt_snapshots_lab=T_sim_lab / 2.,
                                              Ntot_snapshots_lab=3,
                                              gamma_boost=gamma_boost,
                                              period=diag_period,
                                              fldobject=sim.fld,
                                              species={"ions": ions},
                                              comm=sim.comm,
                                              write_dir='tests/lab_diags'))

    # Run the simulation
    sim.step(N_step, use_true_rho=True)

    # Check the fraction of N5+ ions at the end of the simulation
    w = ions.w
    ioniz_level = ions.ionizer.ionization_level
    # Get the total number of N atoms/ions (all ionization levels together)
    ntot = w.sum()
    # Get the total number of N5+ ions
    n_N5 = w[ioniz_level == 5].sum()
    # Get the fraction of N5+ ions, and check that it is close to 0.32
    N5_fraction = n_N5 / ntot
    print('N5+ fraction: %.4f' % N5_fraction)
    assert ((N5_fraction > 0.30) and (N5_fraction < 0.34))

    # When different electron species are created, check the fraction of
    # each electron species
    if use_separate_electron_species:
        for i_level in range(level_start, level_max):
            n_N = w[ioniz_level == i_level].sum()
            assert np.allclose(target_species[i_level].w.sum(), n_N)

    # Check consistency in the regular openPMD diagnostics
    ts = OpenPMDTimeSeries('./tests/diags/hdf5/')
    last_iteration = ts.iterations[-1]
    w, q = ts.get_particle(['w', 'charge'],
                           species="ions",
                           iteration=last_iteration)
    # Check that the openPMD file contains the same number of N5+ ions
    n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
    assert np.isclose(n_N5_openpmd, n_N5)
    # Remove openPMD files
    shutil.rmtree('./tests/diags/')

    # Check consistency of the back-transformed openPMD diagnostics
    if gamma_boost > 1.:
        ts = OpenPMDTimeSeries('./tests/lab_diags/hdf5/')
        last_iteration = ts.iterations[-1]
        w, q = ts.get_particle(['w', 'charge'],
                               species="ions",
                               iteration=last_iteration)
        # Check that the openPMD file contains the same number of N5+ ions
        n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
        assert np.isclose(n_N5_openpmd, n_N5)
        # Remove openPMD files
        shutil.rmtree('./tests/lab_diags/')
    if use_restart is False:
        # Track electrons if required (species 0 correspond to the electrons)
        if track_electrons:
            elec.track(sim.comm)
    else:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add diagnostics
    sim.diags = [
        FieldDiagnostic(diag_period, sim.fld, comm=sim.comm),
        ParticleDiagnostic(diag_period, {
            "electrons from N": elec_from_N,
            "electrons": elec
        },
                           comm=sim.comm),
        # Since rho from `FieldDiagnostic` is 0 almost everywhere
        # (neutral plasma), it is useful to see the charge density
        # of individual particles
        ParticleChargeDensityDiagnostic(diag_period, sim, {"electrons": elec})
    ]
    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, checkpoint_period)

    ### Run the simulation
    sim.step(N_step)
Example #5
0
                               p_zmin=p_zmin)

    # Activate ionization of He ions (for levels above 1).
    # Store the created electrons in the species `elec`
    atoms_He.make_ionizable('He', target_species=elec, level_start=1)

    # Activate ionization of N ions (for levels above 5).
    # Store the created electrons in a new dedicated electron species that
    # does not contain any macroparticles initially
    elec_from_N = sim.add_new_species(q=-e, m=m_e)
    atoms_N.make_ionizable('N', target_species=elec_from_N, level_start=5)

    # Add a laser to the fields of the simulation
    add_laser(sim, a0, w0, ctau, z0, zf=z_foc)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add a diagnostics
    sim.diags = [
        FieldDiagnostic(diag_period, sim.fld, comm=sim.comm),
        ParticleDiagnostic(diag_period, {
            "e- from N": elec_from_N,
            "e-": elec
        },
                           comm=sim.comm)
    ]

    ### Run the simulation
    sim.step(N_step)
Example #6
0
    def add_diagnostic(self, diagnostic):
        # Call method of parent class
        PICMI_Simulation.add_diagnostic(self, diagnostic)

        # Handle iteration_min/max in regular diagnostic
        if type(diagnostic) in [
                PICMI_FieldDiagnostic, PICMI_ParticleDiagnostic
        ]:
            if diagnostic.step_min is None:
                iteration_min = 0
            else:
                iteration_min = diagnostic.step_min
            if diagnostic.step_max is None:
                iteration_max = np.inf
            else:
                iteration_max = diagnostic.step_max

        # Register field diagnostic
        if type(diagnostic) in [
                PICMI_FieldDiagnostic, PICMI_LabFrameFieldDiagnostic
        ]:
            if diagnostic.data_list is None:
                data_list = ['rho', 'E', 'B', 'J']
            else:
                data_list = set()  # Use set to avoid redundancy
                for data in diagnostic.data_list:
                    if data in ['Ex', 'Ey', 'Ez', 'E']:
                        data_list.add('E')
                    elif data in ['Bx', 'By', 'Bz', 'B']:
                        data_list.add('B')
                    elif data in ['Jx', 'Jy', 'Jz', 'J']:
                        data_list.add('J')
                    elif data == 'rho':
                        data_list.add('rho')
                data_list = list(data_list)

        if type(diagnostic) == PICMI_FieldDiagnostic:

            diag = FieldDiagnostic(period=diagnostic.period,
                                   fldobject=self.fbpic_sim.fld,
                                   comm=self.fbpic_sim.comm,
                                   fieldtypes=data_list,
                                   write_dir=diagnostic.write_dir,
                                   iteration_min=iteration_min,
                                   iteration_max=iteration_max)

            # Register particle density diagnostic
            rho_density_list = []
            if diagnostic.data_list is not None:
                for data in diagnostic.data_list:
                    if data.startswith('rho_'):
                        # particle density diagnostics, rho_speciesname
                        rho_density_list.append(data)
            if rho_density_list:
                species_dict = {}
                for data in rho_density_list:
                    sname = data[4:]
                    for s in self.species:
                        if s.name == sname:
                            species_dict[s.name] = s.fbpic_species
                pdd_diag = ParticleChargeDensityDiagnostic(
                    period=diagnostic.period,
                    sim=self.fbpic_sim,
                    species=species_dict,
                    write_dir=diagnostic.write_dir,
                    iteration_min=iteration_min,
                    iteration_max=iteration_max)
                self.fbpic_sim.diags.append(pdd_diag)

        elif type(diagnostic) == PICMI_LabFrameFieldDiagnostic:
            diag = BackTransformedFieldDiagnostic(
                zmin_lab=diagnostic.grid.lower_bound[1],
                zmax_lab=diagnostic.grid.upper_bound[1],
                v_lab=c,
                dt_snapshots_lab=diagnostic.dt_snapshots,
                Ntot_snapshots_lab=diagnostic.num_snapshots,
                gamma_boost=self.gamma_boost,
                period=100,
                fldobject=self.fbpic_sim.fld,
                comm=self.fbpic_sim.comm,
                fieldtypes=diagnostic.data_list,
                write_dir=diagnostic.write_dir)
        # Register particle diagnostic
        elif type(diagnostic) in [
                PICMI_ParticleDiagnostic, PICMI_LabFrameParticleDiagnostic
        ]:
            species_dict = {}
            for s in diagnostic.species:
                if s.name is None:
                    raise ValueError('When using a species in a diagnostic, '
                                     'its name must be set.')
                species_dict[s.name] = s.fbpic_species
            if diagnostic.data_list is None:
                data_list = ['position', 'momentum', 'weighting']
            else:
                data_list = diagnostic.data_list
            if type(diagnostic) == PICMI_ParticleDiagnostic:
                diag = ParticleDiagnostic(period=diagnostic.period,
                                          species=species_dict,
                                          comm=self.fbpic_sim.comm,
                                          particle_data=data_list,
                                          write_dir=diagnostic.write_dir,
                                          iteration_min=iteration_min,
                                          iteration_max=iteration_max)
            else:
                diag = BackTransformedParticleDiagnostic(
                    zmin_lab=diagnostic.grid.lower_bound[1],
                    zmax_lab=diagnostic.grid.upper_bound[1],
                    v_lab=c,
                    dt_snapshots_lab=diagnostic.dt_snapshots,
                    Ntot_snapshots_lab=diagnostic.num_snapshots,
                    gamma_boost=self.gamma_boost,
                    period=100,
                    fldobject=self.fbpic_sim.fld,
                    species=species_dict,
                    comm=self.fbpic_sim.comm,
                    particle_data=data_list,
                    write_dir=diagnostic.write_dir)

        # Add it to the FBPIC simulation
        self.fbpic_sim.diags.append(diag)
Example #7
0
def run_simulation(gamma_boost, show):
    """
    Run a simulation with a relativistic electron bunch crosses a laser

    Parameters
    ----------
    gamma_boost: float
        The Lorentz factor of the frame in which the simulation is carried out.
    show: bool
        Whether to show a plot of the angular distribution
    """
    # Boosted frame
    boost = BoostConverter(gamma_boost)

    # The simulation timestep
    diag_period = 100
    N_step = 101  # Number of iterations to perform
    # Calculate timestep to resolve the interaction with enough points
    laser_duration_boosted, = boost.copropag_length([laser_duration],
                                                    beta_object=-1)
    bunch_sigma_z_boosted, = boost.copropag_length([bunch_sigma_z],
                                                   beta_object=1)
    dt = (4 * laser_duration_boosted + bunch_sigma_z_boosted / c) / N_step

    # Initialize the simulation object
    zmax, zmin = boost.copropag_length([zmax_lab, zmin_lab], beta_object=1.)
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     p_zmin=0,
                     p_zmax=0,
                     p_rmin=0,
                     p_rmax=0,
                     p_nz=1,
                     p_nr=1,
                     p_nt=1,
                     n_e=1,
                     dens_func=None,
                     zmin=zmin,
                     boundaries='periodic',
                     use_cuda=use_cuda)
    # Remove particles that were previously created
    sim.ptcl = []
    print('Initialized simulation')

    # Add electron bunch (automatically converted to boosted-frame)
    add_elec_bunch_gaussian(sim,
                            sig_r=1.e-6,
                            sig_z=bunch_sigma_z,
                            n_emit=0.,
                            gamma0=gamma_bunch_mean,
                            sig_gamma=gamma_bunch_rms,
                            Q=Q_bunch,
                            N=N_bunch,
                            tf=0.0,
                            zf=0.5 * (zmax + zmin),
                            boost=boost)
    elec = sim.ptcl[0]
    print('Initialized electron bunch')
    # Add a photon species
    photons = Particles(q=0,
                        m=0,
                        n=0,
                        Npz=1,
                        zmin=0,
                        zmax=0,
                        Npr=1,
                        rmin=0,
                        rmax=0,
                        Nptheta=1,
                        dt=sim.dt,
                        ux_m=0.,
                        uy_m=0.,
                        uz_m=0.,
                        ux_th=0.,
                        uy_th=0.,
                        uz_th=0.,
                        dens_func=None,
                        continuous_injection=False,
                        grid_shape=sim.fld.interp[0].Ez.shape,
                        particle_shape='linear',
                        use_cuda=sim.use_cuda)
    sim.ptcl.append(photons)
    print('Initialized photons')

    # Activate Compton scattering for electrons of the bunch
    elec.activate_compton(target_species=photons,
                          laser_energy=laser_energy,
                          laser_wavelength=laser_wavelength,
                          laser_waist=laser_waist,
                          laser_ctau=laser_ctau,
                          laser_initial_z0=laser_initial_z0,
                          ratio_w_electron_photon=50,
                          boost=boost)
    print('Activated Compton')

    # Add diagnostics
    if write_hdf5:
        sim.diags = [
            ParticleDiagnostic(diag_period,
                               species={
                                   'electrons': elec,
                                   'photons': photons
                               },
                               comm=sim.comm)
        ]

    # Get initial total momentum
    initial_total_elec_px = (elec.w * elec.ux).sum() * m_e * c
    initial_total_elec_py = (elec.w * elec.uy).sum() * m_e * c
    initial_total_elec_pz = (elec.w * elec.uz).sum() * m_e * c

    ### Run the simulation
    for species in sim.ptcl:
        species.send_particles_to_gpu()

    for i_step in range(N_step):
        for species in sim.ptcl:
            species.halfpush_x()
        elec.handle_elementary_processes(sim.time + 0.5 * sim.dt)
        for species in sim.ptcl:
            species.halfpush_x()
        # Increment time and run diagnostics
        sim.time += sim.dt
        sim.iteration += 1
        for diag in sim.diags:
            diag.write(sim.iteration)
        # Print fraction of photons produced
        if i_step % 10 == 0:
            for species in sim.ptcl:
                species.receive_particles_from_gpu()
            simulated_frac = photons.w.sum() / elec.w.sum()
            for species in sim.ptcl:
                species.send_particles_to_gpu()
            print( 'Iteration %d: Photon fraction per electron = %f' \
                       %(i_step, simulated_frac) )

    for species in sim.ptcl:
        species.receive_particles_from_gpu()

    # Check estimation of photon fraction
    check_photon_fraction(simulated_frac)
    # Check conservation of momentum (is only conserved )
    if elec.compton_scatterer.ratio_w_electron_photon == 1:
        check_momentum_conservation(gamma_boost, photons, elec,
                                    initial_total_elec_px,
                                    initial_total_elec_py,
                                    initial_total_elec_pz)

    # Transform the photon momenta back into the lab frame
    photon_u = 1. / photons.inv_gamma
    photon_lab_pz = boost.gamma0 * (photons.uz + boost.beta0 * photon_u)
    photon_lab_p = boost.gamma0 * (photon_u + boost.beta0 * photons.uz)

    # Plot the scaled angle and frequency
    if show:
        import matplotlib.pyplot as plt
        # Bin the photons on a grid in frequency and angle
        freq_min = 0.5
        freq_max = 1.2
        N_freq = 500
        gammatheta_min = 0.
        gammatheta_max = 1.
        N_gammatheta = 100
        hist_range = [[freq_min, freq_max], [gammatheta_min, gammatheta_max]]
        extent = [freq_min, freq_max, gammatheta_min, gammatheta_max]
        fundamental_frequency = 4 * gamma_bunch_mean**2 * c / laser_wavelength
        photon_scaled_freq = photon_lab_p * c / (h * fundamental_frequency)
        gamma_theta = gamma_bunch_mean * np.arccos(
            photon_lab_pz / photon_lab_p)
        grid, freq_bins, gammatheta_bins = np.histogram2d(
            photon_scaled_freq,
            gamma_theta,
            weights=photons.w,
            range=hist_range,
            bins=[N_freq, N_gammatheta])
        # Normalize by solid angle, frequency and number of photons
        dw = (freq_bins[1] - freq_bins[0]) * 2 * np.pi * fundamental_frequency
        dtheta = (gammatheta_bins[1] - gammatheta_bins[0]) / gamma_bunch_mean
        domega = 2. * np.pi * np.sin(
            gammatheta_bins / gamma_bunch_mean) * dtheta
        grid /= dw * domega[np.newaxis, 1:] * elec.w.sum()
        grid = np.where(grid == 0, np.nan, grid)
        plt.imshow(grid.T,
                   origin='lower',
                   extent=extent,
                   cmap='gist_earth',
                   aspect='auto',
                   vmax=1.8e-16)
        plt.title('Particles, $d^2N/d\omega \,d\Omega$')
        plt.xlabel('Scaled energy ($\omega/4\gamma^2\omega_\ell$)')
        plt.ylabel(r'$\gamma \theta$')
        plt.colorbar()
        # Plot theory
        plt.plot(1. / (1 + gammatheta_bins**2), gammatheta_bins, color='r')
        plt.show()
        plt.clf()
Example #8
0
def run_simulation(gamma_boost):
    """
    Run a simulation with a laser pulse going through a gas jet of ionizable
    N5+ atoms, and check the fraction of atoms that are in the N5+ state.

    Parameters
    ----------
    gamma_boost: float
        The Lorentz factor of the frame in which the simulation is carried out.
    """
    # The simulation box
    zmax_lab = 20.e-6  # Length of the box along z (meters)
    zmin_lab = 0.e-6
    Nr = 3  # Number of gridpoints along r
    rmax = 10.e-6  # Length of the box along r (meters)
    Nm = 2  # Number of modes used

    # The particles of the plasma
    p_zmin = 5.e-6  # Position of the beginning of the plasma (meters)
    p_zmax = 15.e-6
    p_rmin = 0.  # Minimal radial position of the plasma (meters)
    p_rmax = 100.e-6  # Maximal radial position of the plasma (meters)
    n_e = 1.  # The plasma density is chosen very low,
    # to avoid collective effects
    p_nz = 2  # Number of particles per cell along z
    p_nr = 1  # Number of particles per cell along r
    p_nt = 4  # Number of particles per cell along theta

    # Boosted frame
    boost = BoostConverter(gamma_boost)
    # Boost the different quantities
    beta_boost = np.sqrt(1. - 1. / gamma_boost**2)
    zmin, zmax = boost.static_length([zmin_lab, zmax_lab])
    p_zmin, p_zmax = boost.static_length([p_zmin, p_zmax])
    n_e, = boost.static_density([n_e])
    # Increase the number of particles per cell in order to keep sufficient
    # statistics for the evaluation of the ionization fraction
    if gamma_boost > 1:
        p_nz = int(2 * gamma_boost * (1 + beta_boost) * p_nz)

    # The laser
    a0 = 1.8  # Laser amplitude
    lambda0_lab = 0.8e-6  # Laser wavelength
    # Boost the laser wavelength before calculating the laser amplitude
    lambda0, = boost.copropag_length([lambda0_lab], beta_object=1.)
    # Duration and initial position of the laser
    ctau = 10. * lambda0
    z0 = -2 * ctau
    # Calculate laser amplitude
    omega = 2 * np.pi * c / lambda0
    E0 = a0 * m_e * c * omega / e
    B0 = E0 / c

    def laser_func(F, x, y, z, t, amplitude, length_scale):
        """
        Function that describes a Gaussian laser with infinite waist
        """
        return( F + amplitude * math.cos( 2*np.pi*(z-c*t)/lambda0 ) * \
                math.exp( - (z - c*t - z0)**2/ctau**2 ) )

    # Resolution and number of timesteps
    dz = lambda0 / 16.
    dt = dz / c
    Nz = int((zmax - zmin) / dz) + 1
    N_step = int(
        (2. * 40. * lambda0 + zmax - zmin) / (dz * (1 + beta_boost))) + 1

    # Get the speed of the plasma
    uz_m, = boost.longitudinal_momentum([0.])
    v_plasma, = boost.velocity([0.])

    # The diagnostics
    diag_period = N_step - 1  # Period of the diagnostics in number of timesteps

    # Initialize the simulation object
    sim = Simulation(
        Nz,
        zmax,
        Nr,
        rmax,
        Nm,
        dt,
        p_zmax,
        p_zmax,  # No electrons get created because we pass p_zmin=p_zmax
        p_rmin,
        p_rmax,
        p_nz,
        p_nr,
        p_nt,
        n_e,
        zmin=zmin,
        initialize_ions=False,
        v_comoving=v_plasma,
        use_galilean=False,
        boundaries='open',
        use_cuda=use_cuda)
    sim.set_moving_window(v=v_plasma)

    # Add the N atoms
    p_zmin, p_zmax, Npz = adapt_to_grid(sim.fld.interp[0].z, p_zmin, p_zmax,
                                        p_nz)
    p_rmin, p_rmax, Npr = adapt_to_grid(sim.fld.interp[0].r, p_rmin, p_rmax,
                                        p_nr)
    sim.ptcl.append(
        Particles(q=e,
                  m=14. * m_p,
                  n=0.2 * n_e,
                  Npz=Npz,
                  zmin=p_zmin,
                  zmax=p_zmax,
                  Npr=Npr,
                  rmin=p_rmin,
                  rmax=p_rmax,
                  Nptheta=p_nt,
                  dt=dt,
                  use_cuda=use_cuda,
                  uz_m=uz_m,
                  grid_shape=sim.fld.interp[0].Ez.shape,
                  continuous_injection=False))
    sim.ptcl[1].make_ionizable(element='N',
                               level_start=0,
                               target_species=sim.ptcl[0])

    # Add a laser to the fields of the simulation (external fields)
    sim.external_fields = [
        ExternalField(laser_func, 'Ex', E0, 0.),
        ExternalField(laser_func, 'By', B0, 0.)
    ]

    # Add a field diagnostic
    sim.diags = [
        ParticleDiagnostic(diag_period, {"ions": sim.ptcl[1]},
                           write_dir='tests/diags',
                           comm=sim.comm)
    ]
    if gamma_boost > 1:
        T_sim_lab = (2. * 40. * lambda0_lab + zmax_lab - zmin_lab) / c
        sim.diags.append(
            BoostedParticleDiagnostic(zmin_lab,
                                      zmax_lab,
                                      v_lab=0.,
                                      dt_snapshots_lab=T_sim_lab / 2.,
                                      Ntot_snapshots_lab=3,
                                      gamma_boost=gamma_boost,
                                      period=diag_period,
                                      fldobject=sim.fld,
                                      species={"ions": sim.ptcl[1]},
                                      comm=sim.comm,
                                      write_dir='tests/lab_diags'))

    # Run the simulation
    sim.step(N_step, use_true_rho=True)

    # Check the fraction of N5+ ions at the end of the simulation
    w = sim.ptcl[1].w
    ioniz_level = sim.ptcl[1].ionizer.ionization_level
    # Get the total number of N atoms/ions (all ionization levels together)
    ntot = w.sum()
    # Get the total number of N5+ ions
    n_N5 = w[ioniz_level == 5].sum()
    # Get the fraction of N5+ ions, and check that it is close to 0.32
    N5_fraction = n_N5 / ntot
    print('N5+ fraction: %.4f' % N5_fraction)
    assert ((N5_fraction > 0.30) and (N5_fraction < 0.34))

    # Check consistency in the regular openPMD diagnostics
    ts = OpenPMDTimeSeries('./tests/diags/hdf5/')
    last_iteration = ts.iterations[-1]
    w, q = ts.get_particle(['w', 'charge'],
                           species="ions",
                           iteration=last_iteration)
    # Check that the openPMD file contains the same number of N5+ ions
    n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
    assert np.isclose(n_N5_openpmd, n_N5)
    # Remove openPMD files
    shutil.rmtree('./tests/diags/')

    # Check consistency of the back-transformed openPMD diagnostics
    if gamma_boost > 1.:
        ts = OpenPMDTimeSeries('./tests/lab_diags/hdf5/')
        last_iteration = ts.iterations[-1]
        w, q = ts.get_particle(['w', 'charge'],
                               species="ions",
                               iteration=last_iteration)
        # Check that the openPMD file contains the same number of N5+ ions
        n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
        assert np.isclose(n_N5_openpmd, n_N5)
        # Remove openPMD files
        shutil.rmtree('./tests/lab_diags/')
Example #9
0
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add a field diagnostic
    # Parametric scan: each MPI rank should output its data to a
    # different directory
    write_dir = 'diags_a0_%.2f' % a0
    sim.diags = [
        FieldDiagnostic(diag_period,
                        sim.fld,
                        comm=sim.comm,
                        write_dir=write_dir),
        ParticleDiagnostic(diag_period, {"electrons": elec},
                           select={"uz": [1., None]},
                           comm=sim.comm,
                           write_dir=write_dir)
    ]

    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, checkpoint_period)

    # Number of iterations to perform
    N_step = int(T_interact / sim.dt)

    ### Run the simulation
    sim.step(N_step)
    print('')
def test_linear_wakefield(Nm=1, show=False):
    """
    Run a simulation of linear laser-wakefield and compare the fields
    with the analytical solution.

    Parameters
    ----------
    Nm: int
        The number of azimuthal modes used in the simulation (Use 1, 2 or 3)
        This also determines the profile of the driving laser:
        - Nm=1: azimuthally-polarized annular laser 
          (laser in mode m=0, wakefield in mode m=0)
        - Nm=2: linearly-polarized Gaussian laser
          (laser in mode m=1, wakefield in mode m=0)
        - Nm=3: linearly-polarized Laguerre-Gauss laser
          (laser in mode m=0 and m=2, wakefield in mode m=0 and m=2, 

    show: bool
        Whether to have pop-up windows show the comparison between
        analytical and simulated results
    """
    # Automatically choose higher number of macroparticles along theta
    p_nt = 2 * Nm
    # Initialize the simulation object
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     p_zmin,
                     p_zmax,
                     p_rmin,
                     p_rmax,
                     p_nz,
                     p_nr,
                     p_nt,
                     n_e,
                     use_cuda=use_cuda,
                     boundaries={
                         'z': 'open',
                         'r': 'reflective'
                     })

    # Create the relevant laser profile
    if Nm == 1:
        # Build an azimuthally-polarized pulse from 2 Laguerre-Gauss profiles
        profile = LaguerreGaussLaser( 0, 1, a0=a0, waist=w0, tau=tau, z0=z0,
                                      theta_pol=np.pi/2, theta0=0. ) \
                + LaguerreGaussLaser( 0, 1, a0=a0, waist=w0, tau=tau, z0=z0,
                                      theta_pol=0., theta0=-np.pi/2 )
    elif Nm == 2:
        profile = GaussianLaser(a0=a0,
                                waist=w0,
                                tau=tau,
                                z0=z0,
                                theta_pol=np.pi / 2)
    elif Nm == 3:
        profile = LaguerreGaussLaser(0,
                                     1,
                                     a0=a0,
                                     waist=w0,
                                     tau=tau,
                                     z0=z0,
                                     theta_pol=np.pi / 2)
    add_laser_pulse(sim, profile)

    # Configure the moving window
    sim.set_moving_window(v=c)

    # Add diagnostics
    if write_fields:
        sim.diags.append(FieldDiagnostic(diag_period, sim.fld, sim.comm))
    if write_particles:
        sim.diags.append(
            ParticleDiagnostic(diag_period, {'electrons': sim.ptcl[0]},
                               sim.comm))

    # Prevent current correction for MPI simulation
    if sim.comm.size > 1:
        correct_currents = False
    else:
        correct_currents = True

    # Run the simulation
    sim.step(N_step, correct_currents=correct_currents)

    # Compare the fields
    compare_fields(sim, Nm, show)
        # Track electrons if required (species 0 correspond to the electrons)
        if track_electrons:
            elec.track(sim.comm)
    else:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add diagnostics
    sim.diags = [
        FieldDiagnostic(dt_period / sim.dt, sim.fld, comm=sim.comm),
        ParticleDiagnostic(dt_period / sim.dt, {"electrons": elec},
                           select={
                               "ux": [0, None],
                               "uy": [0, None]
                           },
                           comm=sim.comm),
        ParticleDiagnostic(dt_period / sim.dt, {"beam": beam},
                           particle_data=[
                               "position", "momentum", "weighting", "E", "B",
                               "gamma"
                           ],
                           comm=sim.comm)
    ]
    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, 50000)

    # Number of iterations to perform
    N_step = int(T_interact / sim.dt)
    add_laser(sim, a0, w0, ctau, z0, lambda0=lambda0, zf=zfoc)

    if use_restart is False:
        # Track electrons if required (species 0 correspond to the electrons)
        if track_electrons:
            elec.track(sim.comm)
    else:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add diagnostics
    sim.diags = [
        FieldDiagnostic(dt_period / sim.dt, sim.fld, comm=sim.comm),
        ParticleDiagnostic(dt_period / sim.dt, {"electrons": elec},
                           select={"uz": [1., None]},
                           comm=sim.comm)
    ]
    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, 500000)

    # Number of iterations to perform
    N_step = int(T_interact / sim.dt)

    ### Run the simulation
    sim.step(N_step)
    print('')
Example #13
0
def run_fbpic(job: Job) -> None:
    """
    This ``signac-flow`` operation runs a ``fbpic`` simulation.

    :param job: the job instance is a handle to the data of a unique statepoint
    """
    from fbpic.main import Simulation
    from fbpic.lpa_utils.laser import add_laser_pulse, GaussianLaser
    from fbpic.openpmd_diag import FieldDiagnostic, ParticleDiagnostic

    # The density profile
    def dens_func(z: np.ndarray, r: np.ndarray) -> np.ndarray:
        """Returns relative density at position z and r.

        :param z: longitudinal positions, 1d array
        :param r: radial positions, 1d array
        :return: a 1d array ``n`` containing the density (between 0 and 1) at the given positions (z, r)
        """
        # Allocate relative density
        n = np.ones_like(z)

        # Make linear ramp
        n = np.where(
            z < job.sp.ramp_start + job.sp.ramp_length,
            (z - job.sp.ramp_start) / job.sp.ramp_length,
            n,
        )

        # Supress density before the ramp
        n = np.where(z < job.sp.ramp_start, 0.0, n)

        return n

    # plot density profile for checking
    all_z = np.linspace(job.sp.zmin, job.sp.p_zmax, 1000)
    dens = dens_func(all_z, 0.0)

    width_inch = job.sp.p_zmax / 1e-5
    major_locator = pyplot.MultipleLocator(10)
    minor_locator = pyplot.MultipleLocator(5)
    major_locator.MAXTICKS = 10000
    minor_locator.MAXTICKS = 10000

    def mark_on_plot(*, ax, parameter: str, y=1.1):
        ax.annotate(s=parameter,
                    xy=(job.sp[parameter] * 1e6, y),
                    xycoords="data")
        ax.axvline(x=job.sp[parameter] * 1e6, linestyle="--", color="red")
        return ax

    fig, ax = pyplot.subplots(figsize=(width_inch, 4.8))
    ax.plot(all_z * 1e6, dens)
    ax.set_xlabel(r"$%s \;(\mu m)$" % "z")
    ax.set_ylim(-0.1, 1.2)
    ax.set_xlim(job.sp.zmin * 1e6 - 20, job.sp.p_zmax * 1e6 + 20)
    ax.set_ylabel("Density profile $n$")
    ax.xaxis.set_major_locator(major_locator)
    ax.xaxis.set_minor_locator(minor_locator)

    mark_on_plot(ax=ax, parameter="zmin")
    mark_on_plot(ax=ax, parameter="zmax")
    mark_on_plot(ax=ax, parameter="p_zmin", y=0.9)
    mark_on_plot(ax=ax, parameter="z0", y=0.8)
    mark_on_plot(ax=ax, parameter="zf", y=0.6)
    mark_on_plot(ax=ax, parameter="ramp_start", y=0.7)
    mark_on_plot(ax=ax, parameter="L_interact")
    mark_on_plot(ax=ax, parameter="p_zmax")

    ax.annotate(s="ramp_start + ramp_length",
                xy=(job.sp.ramp_start * 1e6 + job.sp.ramp_length * 1e6, 1.1),
                xycoords="data")
    ax.axvline(x=job.sp.ramp_start * 1e6 + job.sp.ramp_length * 1e6,
               linestyle="--",
               color="red")

    ax.fill_between(all_z * 1e6, dens, alpha=0.5)

    fig.savefig(job.fn("check_density.png"))

    # redirect stdout to "stdout.txt"
    orig_stdout = sys.stdout
    f = open(job.fn("stdout.txt"), "w")
    sys.stdout = f

    # Initialize the simulation object
    sim = Simulation(
        job.sp.Nz,
        job.sp.zmax,
        job.sp.Nr,
        job.sp.rmax,
        job.sp.Nm,
        job.sp.dt,
        n_e=None,  # no electrons
        zmin=job.sp.zmin,
        boundaries={
            "z": "open",
            "r": "reflective"
        },
        n_order=-1,
        use_cuda=True,
        verbose_level=2,
    )

    # Create a Gaussian laser profile
    laser_profile = GaussianLaser(a0=job.sp.a0,
                                  waist=job.sp.w0,
                                  tau=job.sp.ctau / c_light,
                                  z0=job.sp.z0,
                                  zf=job.sp.zf,
                                  theta_pol=0.,
                                  lambda0=job.sp.lambda0,
                                  cep_phase=0.,
                                  phi2_chirp=0.,
                                  propagation_direction=1)

    # Add it to the simulation
    add_laser_pulse(sim,
                    laser_profile,
                    gamma_boost=None,
                    method='direct',
                    z0_antenna=None,
                    v_antenna=0.)

    # Create the plasma electrons
    elec = sim.add_new_species(q=-q_e,
                               m=m_e,
                               n=job.sp.n_e,
                               dens_func=dens_func,
                               p_zmin=job.sp.p_zmin,
                               p_zmax=job.sp.p_zmax,
                               p_rmax=job.sp.p_rmax,
                               p_nz=job.sp.p_nz,
                               p_nr=job.sp.p_nr,
                               p_nt=job.sp.p_nt)

    # Track electrons, useful for betatron radiation
    # elec.track(sim.comm)

    # Configure the moving window
    sim.set_moving_window(v=c_light)

    # Add diagnostics
    write_dir = os.path.join(job.ws, "diags")
    sim.diags = [
        FieldDiagnostic(job.sp.diag_period,
                        sim.fld,
                        comm=sim.comm,
                        write_dir=write_dir,
                        fieldtypes=["rho", "E"]),
        ParticleDiagnostic(job.sp.diag_period, {"electrons": elec},
                           select={"uz": [1., None]},
                           comm=sim.comm,
                           write_dir=write_dir,
                           particle_data=["momentum", "weighting"]),
    ]

    # Plot the Ex component of the laser
    # Get the fields in the half-plane theta=0 (Sum mode 0 and mode 1)
    gathered_grids = [
        sim.comm.gather_grid(sim.fld.interp[m]) for m in range(job.sp.Nm)
    ]

    rgrid = gathered_grids[0].r
    zgrid = gathered_grids[0].z

    # construct the Er field for theta=0
    Er = gathered_grids[0].Er.T.real

    for m in range(1, job.sp.Nm):
        # There is a factor 2 here so as to comply with the convention in
        # Lifschitz et al., which is also the convention adopted in Warp Circ
        Er += 2 * gathered_grids[m].Er.T.real

    e0 = electric_field_amplitude_norm(lambda0=job.sp.lambda0)

    fig = pyplot.figure(figsize=(8, 8))
    sliceplots.Plot2D(
        fig=fig,
        arr2d=Er / e0,
        h_axis=zgrid * 1e6,
        v_axis=rgrid * 1e6,
        zlabel=r"$E_r/E_0$",
        xlabel=r"$z \;(\mu m)$",
        ylabel=r"$r \;(\mu m)$",
        extent=(
            zgrid[0] * 1e6,  # + 40
            zgrid[-1] * 1e6,  # - 20
            rgrid[0] * 1e6,
            rgrid[-1] * 1e6,  # - 15,
        ),
        cbar=True,
        vmin=-3,
        vmax=3,
        hslice_val=0.0,  # do a 1D slice through the middle of the simulation box
    )
    fig.savefig(job.fn('check_laser.png'))

    # set deterministic random seed
    np.random.seed(0)

    # Run the simulation
    sim.step(job.sp.N_step, show_progress=False)

    # redirect stdout back and close "stdout.txt"
    sys.stdout = orig_stdout
    f.close()
Example #14
0
        # Track electrons if required (species 0 correspond to the electrons)
        if track_electrons:
            elec.track(sim.comm)
    else:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add diagnostics
    sim.diags = [
        FieldDiagnostic(dt_period / sim.dt, sim.fld, comm=sim.comm),
        ParticleDiagnostic(dt_period / sim.dt, {"electrons": elec},
                           select={
                               "ux": [0, None],
                               "uy": [0, None]
                           },
                           comm=sim.comm)
    ]
    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, 50000)

    # Number of iterations to perform
    N_step = int(T_interact / sim.dt)

    ### Run the simulation
    sim.step(N_step)
    print('')
Example #15
0
              a0,
              w0,
              ctau,
              z0,
              lambda0=lambda0,
              zf=zfoc,
              gamma_boost=gamma_boost)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add a field diagnostic
    sim.diags = [
        FieldDiagnostic(diag_period, sim.fld, sim.comm),
        ParticleDiagnostic(diag_period, {
            "electrons": sim.ptcl[0],
            "bunch": sim.ptcl[2]
        }, sim.comm),
        BoostedFieldDiagnostic(zmin,
                               zmax,
                               c,
                               dt_snapshot_lab,
                               Ntot_snapshot_lab,
                               gamma_boost,
                               period=diag_period,
                               fldobject=sim.fld,
                               comm=sim.comm),
        BoostedParticleDiagnostic(zmin,
                                  zmax,
                                  c,
                                  dt_snapshot_lab,
                                  Ntot_snapshot_lab,
Example #16
0
    # Load initial fields
    # Add a laser to the fields of the simulation
    add_laser(sim, a0, w0, ctau, z0)

    if use_restart is False:
        # Track electrons if required (species 0 correspond to the electrons)
        if track_electrons:
            sim.ptcl[0].track(sim.comm)
    else:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)

    # Add diagnostics
    sim.diags = [
        FieldDiagnostic(diag_period, sim.fld, comm=sim.comm),
        ParticleDiagnostic(diag_period, {"electrons": sim.ptcl[0]},
                           select={"uz": [1., None]},
                           comm=sim.comm)
    ]
    # Add checkpoints
    if save_checkpoints:
        set_periodic_checkpoint(sim, checkpoint_period)

    ### Run the simulation
    sim.step(N_step)
    print('')
Example #17
0
              gamma_boost=boost.gamma0)

    # Convert parameter to boosted frame
    v_window_boosted, = boost.velocity([v_window])
    # Configure the moving window
    sim.set_moving_window(v=v_window_boosted)

    # Add a field diagnostic
    sim.diags = [
        # Diagnostics in the boosted frame
        FieldDiagnostic(dt_period=dt_boosted_diag_period,
                        fldobject=sim.fld,
                        comm=sim.comm),
        ParticleDiagnostic(dt_period=dt_boosted_diag_period,
                           species={
                               "electrons": plasma_elec,
                               "bunch": bunch
                           },
                           comm=sim.comm),
        # Diagnostics in the lab frame (back-transformed)
        BackTransformedFieldDiagnostic(zmin,
                                       zmax,
                                       v_window,
                                       dt_lab_diag_period,
                                       N_lab_diag,
                                       boost.gamma0,
                                       fieldtypes=['rho', 'E', 'B'],
                                       period=write_period,
                                       fldobject=sim.fld,
                                       comm=sim.comm),
        BackTransformedParticleDiagnostic(zmin,
                                          zmax,
Example #18
0
# Add a laser to the fields of the simulation
add_laser(sim, a0, w0, ctau, z0)

# Configure the moving window
sim.set_moving_window(v=c)

# Add diagnostics
if write_fields:
    sim.diags.append(FieldDiagnostic(diag_period, sim.fld, sim.comm))
    sim.diags.append(
        FieldDiagnostic(diag_period,
                        sim.fld,
                        None,
                        write_dir='proc%d' % sim.comm.rank))
if write_particles:
    sim.diags.append(
        ParticleDiagnostic(diag_period, {'electrons': sim.ptcl[0]}, sim.comm))

if __name__ == '__main__':
    # Prevent current correction for MPI simulation
    if sim.comm.size > 1:
        correct_currents = False
    else:
        correct_currents = True

    # Run the simulation
    sim.step(N_step, correct_currents=correct_currents)

    # Plot the fields
    compare_fields(sim)