def im_detect_bbox(model, images, target_scale, target_max_size, device): """ Performs bbox detection on the original image. """ transform = TT.Compose([ T.Resize(target_scale, target_max_size), TT.ToTensor(), T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255) ]) images = [transform(image) for image in images] images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY) return model(images.to(device))
def im_detect_bbox_hflip(model, images, target_scale, target_max_size, device): """ Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ transform = TT.Compose([ T.Resize(target_scale, target_max_size), TT.RandomHorizontalFlip(1.0), TT.ToTensor(), T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255) ]) images = [transform(image) for image in images] images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY) boxlists = model(images.to(device)) # Invert the detections computed on the flipped image boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists] return boxlists_inv