Example #1
0
def refine_gfimage(img, mask):  #time-consuming-mask
    # Draw BBox using gf
    bboxes = findBBox(img, mask)
    if bboxes is None:
        return mask

    box_img = np.zeros((img.shape), dtype=np.uint8)
    #cv2.drawContours(box_img,[bboxes],-1,(255,255,255),1)
    for bbox in bboxes:
        bbox_ = resizeBBox(bbox, ratio=1.0)
        cv2.drawContours(box_img, [bbox_], 0, (255, 255, 255), 1)
    newmask = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
    #
    #img_contours,contours,hierarchy = cv2.findContours(newmask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
    contours, hierarchy = cv2.findContours(newmask, cv2.RETR_LIST,
                                           cv2.CHAIN_APPROX_NONE)
    img_contours = np.zeros((img.shape), dtype=np.uint8)
    if len(contours) == 0:
        return mask
    for contour in contours:
        random.shuffle(contour)
        cv2.drawContours(img_contours, [contour], 0, (255, 255, 255), 1)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    newmask = cv2.morphologyEx(img_contours[:, :, 0], cv2.MORPH_CLOSE, kernel)
    return newmask
Example #2
0
    def detect(self, origin, isdebug=False):
        start = time.time()
        # Default Size
        h, w, c = origin.shape
        size = 200.0
        # Resize
        img = cv2.resize(origin, (int(w * size / h), int(size)))
        #showResult("img",img)
        for case in switch(AnalyzeImageQuality.dayornight(img)):
            if case('Day'):
                # Extract Good Features
                corners = refinedGoodFeatures(origin, img)
                mask = checkFeatures(img, corners, isdebug)
                closing = close(mask)
                refined_gfmask = refine_gfimage(img, closing)
                #showResult("refined_gfmask",refined_gfmask)
                finalmasks = mkfinalmasks(img,
                                          refined_gfmask,
                                          isday=True,
                                          isdebug=isdebug)
                break
            if case('Night'):
                finalmasks = mkfinalmasks(img, None, isday=isdebug)
                break

        for colrindex, fmask in enumerate(finalmasks):
            if (fmask > 0).sum() == 0:
                continue
            bboxes = mask2plates(img, fmask)
            # Resize
            if bboxes is not None:
                bboxes = resizeBBoxes(bboxes, h / size)
                rois = BBoxes2ROIs(origin, bboxes)
                for i, roi in enumerate(rois):
                    confidence = self.licenplatevalidator.process(
                        roi, mode=colrs[colrindex], isdebug=isdebug)
                    print confidence
                    if confidence > 0.7:
                        #pts = self.licenplatevalidator.getRefinedROI()
                        #bbox = refineBBox(bboxes[i],pts)
                        bbox = resizeBBox(bboxes[i], ratio=0.9)
                        print("total elapsed time: " +
                              str(int((time.time() - start) * 1000) / 1000.0) +
                              "s")
                        return confidence, [bbox], [roi]
        '''            
        # Check Result
        if isdebug and bboxes is not None:
            drawBBox(origin,bboxes,debug=True)
            for i in range(len(rois)):
                showResult("cropped",rois[i])
        '''
        return 0.0, None, None