Example #1
0
def _feature_by_type_splits(config, train_mode):
    if train_mode:
        feature_by_type_split = Step(name='feature_by_type_split',
                                     transformer=fe.DataFrameByTypeSplitter(
                                         **config.dataframe_by_type_splitter),
                                     input_data=['input'],
                                     adapter={
                                         'X': ([('input', 'X')]),
                                     },
                                     cache_dirpath=config.env.cache_dirpath)

        feature_by_type_split_valid = Step(
            name='feature_by_type_split_valid',
            transformer=feature_by_type_split,
            input_data=['input'],
            adapter={
                'X': ([('input', 'X_valid')]),
            },
            cache_dirpath=config.env.cache_dirpath)

        return feature_by_type_split, feature_by_type_split_valid

    else:
        feature_by_type_split = Step(name='feature_by_type_split',
                                     transformer=fe.DataFrameByTypeSplitter(
                                         **config.dataframe_by_type_splitter),
                                     input_data=['input'],
                                     adapter={
                                         'X': ([('input', 'X')]),
                                     },
                                     cache_dirpath=config.env.cache_dirpath)

        return feature_by_type_split
Example #2
0
def _feature_by_type_splits(config, train_mode):
    if train_mode:
        feature_by_type_split = Step(name='feature_by_type_split',
                                     transformer=fe.DataFrameByTypeSplitter(**config.dataframe_by_type_splitter),
                                     input_data=['input'],
                                     adapter=Adapter({'X': E('input', 'X')}),
                                     experiment_directory=config.pipeline.experiment_directory)

        feature_by_type_split_valid = Step(name='feature_by_type_split_valid',
                                           transformer=feature_by_type_split,
                                           input_data=['input'],
                                           adapter=Adapter({'X': E('input', 'X_valid')}),
                                           experiment_directory=config.pipeline.experiment_directory)

        return feature_by_type_split, feature_by_type_split_valid

    else:
        feature_by_type_split = Step(name='feature_by_type_split',
                                     transformer=fe.DataFrameByTypeSplitter(**config.dataframe_by_type_splitter),
                                     input_data=['input'],
                                     adapter=Adapter({'X': E('input', 'X')}),
                                     experiment_directory=config.pipeline.experiment_directory)

    return feature_by_type_split