Example #1
0
                                  epochs=epochs,
                                  validation_data=(test_dataset_x[0],
                                                   feature_test_data),
                                  verbose=verbose)
    print('{} train:'.format(student.name),
          student_history.history['mean_squared_error'])
    print('{} test:'.format(student.name),
          student_history.history['val_mean_squared_error'])
    #dataset_update(student_history, student,parameters)

    student_predictions = student(test_dataset_x[0][:evaluate_prediction_size])

    return student_predictions


# student1_predictions = train_student(student1(), model, )
# student2_predictions = train_student(student2(), model, )
student3_predictions = train_student(
    student3(),
    model,
)
# student_cnn_predictions = train_student(studentcnn(), model, )

with open(
        prediction_data_path +
        'predictions_2_{}_{}_{}'.format(layer_name, feature, run_index),
        'wb') as file_pi:
    pickle.dump(
        (feature_test_data[:evaluate_prediction_size], student3_predictions),
        file_pi)
Example #2
0
        pickle.dump(all_weights, file_pi)
    #LOAD WITH - pickle.load - and load manualy to model.get_layer.set_weights()

    #save weights with keras
    keras_weights_path = child_folder + '{}_keras_weights/'.format(
        feature_list)
    if not os.path.exists(keras_weights_path):
        os.mkdir(keras_weights_path)
    net.save_weights(keras_weights_path +
                     'keras_weights_{}_{}'.format(feature_list, traject))
    #LOADING WITH - load_status = sequential_model.load_weights("ckpt")


student = student3(sample=sample,
                   res=res,
                   activation='relu',
                   dropout=dropout,
                   rnn_dropout=rnn_dropout,
                   num_feature=num_feature)

student.evaluate(test_dataset_x[0], feature_test_data, verbose=2)
student_history = student.fit(
    train_dataset_x[0],
    feature_train_data,
    batch_size=32,
    epochs=epochs,
    validation_data=(test_dataset_x[0], feature_test_data),
    verbose=verbose,
    callbacks=[model_checkpoint_callback, lr_reducer, early_stopper])
print('{} train:'.format(student.name),
      student_history.history['mean_squared_error'])
print('{} test:'.format(student.name),
t_f = True
feature_list = 'all'
temp_path = path + 'saved_models/{}_feature/'.format(feature_list)
home_folder = temp_path + '{}_{}_saved_models/'.format(feature_list, trajectory_index)
checkpoint = t_f
if checkpoint:
    child_folder = home_folder + 'checkpoint/'
else:
    child_folder = home_folder + 'end_of_run_model/'


#loading weights as numpy array
numpy_weights_path = child_folder + '{}_numpy_weights/'.format(feature_list)
with open(numpy_weights_path + 'numpy_weights_{}_{}'.format(feature_list,trajectory_index), 'rb') as file_pi:
    np_weights = pickle.load(file_pi)
numpy_student = student3(activation = 'relu', dropout = 0.2, rnn_dropout = 0, num_feature = 64)
layer_index = 0
for i in range(3):
    layer_name = 'convLSTM{}'.format(i+1)
    saved_weights = [np_weights[layer_index], np_weights[layer_index+ 1], np_weights[layer_index+ 2]]
    numpy_student.get_layer(layer_name).set_weights(saved_weights)
    layer_index += 3
res = 8
sample = 10
def full_student(student, decoder):
    input = keras.layers.Input(shape=(sample, res,res,3))\
        
    student_features = student(input)
    decoder_prediction = decoder(student_features)
    
    model = keras.models.Model(inputs=input,outputs=decoder_prediction)
Example #4
0
          student_history.history['val_mean_squared_error'])
    dataset_update(student_history, student, parameters, name='sample_5')
    print(student.get_weights()[3][:4, :4])
    save_model(student, save_model_path, parameters, checkpoint=False)
    student.load_weights(checkpoint_filepath)
    save_model(student, save_model_path, parameters, checkpoint=True)
    student.evaluate(test_dataset_x[0], feature_test_data, verbose=2)
    student_predictions = student(test_dataset_x[0])
    train_predictions = student(train_dataset_x[0])
    return student_predictions, train_predictions


#jul 15 on 13:00 I chainged the activation to relu befor it was tanh (defoult) run 184770 /184790
#student1_predictions = train_student(student1(activation = 'relu'), model, )
#student2_predictions = train_student(student2(activation = 'relu'), model, )
student3_predictions, train3_predictions = train_student(
    student3(activation='relu', dropout=dropout, rnn_dropout=rnn_dropout),
    model,
)
#student3_predictions = train_student(student3(activation = 'relu', dropout = dropout, rnn_dropout = rnn_dropout), model, )
#student_cnn_predictions = train_student(studentcnn(), model, )

with open(
        prediction_data_path + 'predictions_traject_{}_{}_{}_{}'.format(
            layer_name,
            feature,
            trajectory_index,
            run_index,
        ), 'wb') as file_pi:
    pickle.dump((feature_test_data, student3_predictions), file_pi)
                    validation_data=(test_dataset_x[0], feature_test_data),
                    verbose = verbose,
                    callbacks=[model_checkpoint_callback])
    print('{} train:'.format(student.name), student_history.history['mean_squared_error'])
    print('{} test:'.format(student.name), student_history.history['val_mean_squared_error'])
    dataset_update(student_history, student,parameters, name = 'compare_traject')
    print(student.get_weights()[3][:4,:4])
    save_model(student, save_model_path, parameters, checkpoint = False)
    student.load_weights(checkpoint_filepath)
    save_model(student, save_model_path, parameters, checkpoint = True)
    student.evaluate(test_dataset_x[0],
                    feature_test_data, verbose = 2)
    student_predictions = student(test_dataset_x[0])
    train_predictions = student(train_dataset_x[0])
    return student_predictions, train_predictions

#jul 15 on 13:00 I chainged the activation to relu befor it was tanh (defoult) run 184770 /184790
#student1_predictions = train_student(student1(activation = 'relu'), model, )
#student2_predictions = train_student(student2(activation = 'relu'), model, )
student3_predictions,train3_predictions = train_student(student3(activation = 'relu', dropout = dropout, rnn_dropout = rnn_dropout), model, )
#student3_predictions = train_student(student3(activation = 'relu', dropout = dropout, rnn_dropout = rnn_dropout), model, )
#student_cnn_predictions = train_student(studentcnn(), model, )

with open(prediction_data_path + 'predictions_traject_{}_{}_{}'.format(layer_name, feature, run_index), 'wb') as file_pi:
    pickle.dump((feature_test_data, student3_predictions, train3_predictions), file_pi)