def __main__(): matrix = [[0.7, 0.9, 0.4, 0.6, 1], [0.6, 0.9, 0.3, 0.7, 1], [0.6, 0.8, 0.3, 0.5, 1], [0.3, 0.5, 0.7, 0.2, 1], [0.3, 0.4, 0.8, 0.3, 1], [0.4, 0.5, 0.6, 0.3, 1], [0.9, 0.4, 0.5, 0.9, 0], [0.8, 0.5, 0.4, 0.8, 0], [0.2, 0.6, 0.7, 1.0, 0], [0.1, 0.7, 0.8, 0.8, 0]] instance_selection_obj = InstanceSelection(matrix) instance_selection_obj.apply() feature_selection_obj = FeatureSelection( instance_selection_obj.representative_instances_list[0]) feature_selection_obj.apply(instance_selection_obj) print(instance_selection_obj.representative_instances_list) print(feature_selection_obj.rep_feature_set)
for size in range(MAX_ITERATIONS-1,MAX_ITERATIONS): np.random.shuffle(data) test_data = data[:size] #Representative Instance Selection start_time1 = time.time() InstanceSelector = InstanceSelection(test_data) InstanceSelector.apply() end_time1 = time.time() algo1_time = end_time1-start_time1 #Feature Selection start_time2 = time.time() feature_selection_obj = FeatureSelection(InstanceSelector.representative_instances_list[0]) feature_selection_obj.apply(InstanceSelector) end_time2 = time.time() algo2_time = end_time2-start_time2 # print("Algo 1 time : ",algo1_time) # print("Algo 2 time : ",algo2_time) representative_instances = InstanceSelector.representative_instances_list # print("Instance set : ",representative_instances) feature_set = list(feature_selection_obj.rep_feature_set) # print("Feature set : ",feature_set) # time_taken[size] = end_time-start_time # print(len(InstanceSelector.representative_instances_list[0])) print("{:27s} |{:8s}|{:8s}|{:8s}|{:8s}".format("Model","Accuracy","Precision","Recall","F1-score")) print("-"*65) for model in models: