import nltk from classifiers.maxent_most_informative_features import most_informative_features from features.feature_set_builder import get_feature_set train_set, test_set = get_feature_set("all") classifier = nltk.MaxentClassifier.train(train_set) with open("classifier_maxent_all.txt", "w") as f: f.write("Accuracy: " + str(nltk.classify.accuracy(classifier, test_set))) f.write("\n") for k in most_informative_features(classifier, 15): f.write(k.split('_')[0] + " " + k.split('_')[-1] + "\n")
import nltk from classifiers.decision_tree_most_informative_features import most_informative_features from features.feature_set_builder import get_feature_set train_set, test_set = get_feature_set("pos") classifier = nltk.DecisionTreeClassifier.train(train_set) features = most_informative_features(classifier, 15) with open("classifier_decision_tree_pos.txt", "w") as f: f.write("Accuracy: " + str(nltk.classify.accuracy(classifier, test_set))) f.write("\n") for k in features: f.write(k.split('_')[0] + "\n")
import nltk from features.feature_set_builder import get_feature_set train_set, test_set = get_feature_set("neg") classifier = nltk.NaiveBayesClassifier.train(train_set) with open("classifier_bayes_neg.txt", "w") as f: f.write("Accuracy: " + str(nltk.classify.accuracy(classifier, test_set))) f.write("\n") for k, v in classifier.most_informative_features(15): f.write(k.split('_')[0] + "\n")