Example #1
0
 def forward(self, volume_ts, close_ts):
     output_tensor = (
         ((-1 * tsf.rank(tsf.ts_rank(close_ts, 10))) *
          tsf.rank(tsf.diff(tsf.diff(close_ts, 1), 1))) * tsf.rank(
              tsf.ts_rank(
                  (volume_ts / tsf.rolling_mean_(volume_ts, 20)), 5)))
     return output_tensor
Example #2
0
 def forward(self, volume_ts, vwap_ts):
     output_tensor = ((tsf.rank(
         (vwap_ts - tsf.rolling_min(vwap_ts, 12)))**tsf.ts_rank(
             tsf.rolling_corr(
                 tsf.ts_rank(vwap_ts, 20),
                 tsf.ts_rank(tsf.rolling_mean_(volume_ts, 60), 2), 18), 3))
                      * -1)
     return output_tensor
Example #3
0
 def forward(self, high_ts, low_ts, close_ts, volume_ts):
     output_tensor = (tsf.rank(
         tsf.rolling_corr(
             ((high_ts * 0.9) + (close_ts * 0.1)),
             tsf.rolling_mean_(volume_ts, 30), 10))**tsf.rank(
                 tsf.rolling_corr(tsf.ts_rank(((high_ts + low_ts) / 2), 4),
                                  tsf.ts_rank(volume_ts, 10), 7)))
     return output_tensor
Example #4
0
 def forward(self, close_ts, volume_ts):
     adv20 = tsf.rolling_mean_(volume_ts, 20)
     alpha = -1 * tsf.ts_rank(abs(tsf.diff(close_ts, 7)), 60) * torch.sign(
         tsf.diff(close_ts, 7))
     cond = adv20 >= volume_ts
     ones = torch.ones(close_ts.size())
     output_tensor = torch.where(
         cond, -1 * ones, alpha.float())  # confusing why must .float()
     return output_tensor
Example #5
0
 def forward(self, close_ts, returns_ts):
     return tsf.rolling_min(
         tsf.rank(
             tsf.rank(
                 tsf.rolling_scale(
                     torch.log(
                         tsf.rolling_sum_(
                             tsf.rank(
                                 tsf.rank(-1 * tsf.rank(
                                     tsf.diff((close_ts - 1), 5)))), 2))))),
         5) + tsf.ts_rank(tsf.shift((-1 * returns_ts), 6), 5)
Example #6
0
 def test_tsrank_ties(self):
     output_tsrank = tsf.ts_rank(self.test_2d_1big, 2)
     output_tsrank = torch.where(torch.isnan(output_tsrank),
                                 torch.full_like(output_tsrank, 666),
                                 output_tsrank)  # fillna
     expected = torch.tensor([[np.nan, np.nan], [1, 1], [1, 1], [1, 1],
                              [1, 1]])
     expected = torch.where(torch.isnan(expected),
                            torch.full_like(expected, 666),
                            expected)  # fillna
     result = (expected == output_tsrank).all().item()
     self.assertTrue(result, 'test_tsrank_ties failed')
Example #7
0
 def forward(self, low_ts, volume_ts, returns_ts):
     return ((-1 * tsf.diff(tsf.rolling_min(low_ts, 5), 5)) * tsf.rank(
         ((tsf.rolling_sum_(returns_ts, 60) - tsf.rolling_sum_(
             returns_ts, 20)) / 55))) * tsf.ts_rank(volume_ts, 5)
Example #8
0
 def forward(self, close_ts, volume_ts):
     adv20 = tsf.rolling_mean_(volume_ts, 20)
     alpha = tsf.ts_rank(volume_ts / adv20, 20) * tsf.ts_rank(
         (-1 * tsf.diff(close_ts, 7)), 8)
     return alpha
Example #9
0
 def forward(self, low_ts):
     alpha = -1 * tsf.ts_rank(tsf.rank(low_ts), 9)
     return alpha
Example #10
0
 def forward(self, open_ts, close_ts):
     inner = close_ts / open_ts
     alpha = -1 * tsf.rank(tsf.ts_rank(open_ts, 10)) * tsf.rank(inner)
     return alpha
Example #11
0
 def forward(self, high_ts, low_ts, close_ts, volume_ts, returns_ts):
     return (tsf.ts_rank(volume_ts, 32) *
             (1 - tsf.ts_rank(close_ts + high_ts - low_ts, 16))) * (
                 1 - tsf.ts_rank(returns_ts, 32))
Example #12
0
 def forward(self, volume_ts, close_ts):
     output_tensor = (tsf.ts_rank(
         (volume_ts / tsf.rolling_mean_(volume_ts, 20)), 20) * tsf.ts_rank(
             (-1 * tsf.diff(close_ts, 7)), 8))
     return output_tensor
Example #13
0
 def forward(self, close_ts, volume_ts):
     adv20 = tsf.rolling_mean_(volume_ts, 20)
     alpha = -1 * (tsf.rank(tsf.ts_rank(close_ts, 10)) *
                   tsf.rank(tsf.diff(tsf.diff(close_ts, 1), 1)) *
                   tsf.rank(tsf.ts_rank((volume_ts / adv20), 5)))
     return alpha
Example #14
0
 def forward(self, high_ts, low_ts, volume_ts, close_ts, return_ts):
     output_tensor = ((tsf.ts_rank(volume_ts, 32) * (1 - tsf.ts_rank(
         ((close_ts + high_ts) - low_ts), 16))) *
                      (1 - tsf.ts_rank(return_ts, 32)))
     return output_tensor
Example #15
0
 def forward(self, high_ts, volume_ts):
     ts = tsf.rolling_cov(tsf.ts_rank(volume_ts, 5),
                          tsf.ts_rank(high_ts, 5), 5)
     alpha = -1 * tsf.rolling_max(ts, 3)
     return alpha
 def forward(self, volume_ts, high_ts, rank_period):
     output_tensor = -1 * tsf.rolling_max(
         tsf.rolling_corr(tsf.ts_rank(volume_ts, rank_period), tsf.ts_rank(high_ts, rank_period), self.window),
         self.window)
     return output_tensor
Example #17
0
 def forward(self, volume_ts, high_ts):
     output_tensor = -1 * tsf.rolling_max(
         tsf.rolling_corr(tsf.ts_rank(volume_ts, 5), tsf.ts_rank(
             high_ts, 5), 5), 3)
     return output_tensor