Example #1
0
def results_visualization(history, composed_chains):
    visualiser = ChainVisualiser()
    visualiser.visualise_history(history)
    visualiser.pareto_gif_create(history.archive_history, history.chains)
    visualiser.boxplots_gif_create(history.chains)
    for chain_evo_composed in composed_chains:
        visualiser.visualise(chain_evo_composed)
Example #2
0
def run_chain_ang_history_visualisation(generations=2,
                                        pop_size=10,
                                        with_chain_visualisation=True):
    """ Function run visualisation of composing history and chain """
    # Generate chain and history
    chain = chain_first()
    history = generate_history(generations, pop_size)

    visualiser = ChainVisualiser()
    visualiser.visualise_history(history)
    if with_chain_visualisation:
        visualiser.visualise(chain)
Example #3
0
def run_credit_scoring_problem(
        train_file_path,
        test_file_path,
        max_lead_time: datetime.timedelta = datetime.timedelta(minutes=5),
        is_visualise=False,
        with_tuning=False):
    task = Task(TaskTypesEnum.classification)
    dataset_to_compose = InputData.from_csv(train_file_path, task=task)
    dataset_to_validate = InputData.from_csv(test_file_path, task=task)

    # the search of the models provided by the framework that can be used as nodes in a chain for the selected task
    available_model_types, _ = ModelTypesRepository().suitable_model(
        task_type=task.task_type)

    # the choice of the metric for the chain quality assessment during composition
    metric_function = MetricsRepository().metric_by_id(
        ClassificationMetricsEnum.ROCAUC_penalty)

    # the choice and initialisation of the GP search
    composer_requirements = GPComposerRequirements(
        primary=available_model_types,
        secondary=available_model_types,
        max_arity=3,
        max_depth=3,
        pop_size=20,
        num_of_generations=20,
        crossover_prob=0.8,
        mutation_prob=0.8,
        max_lead_time=max_lead_time)

    # GP optimiser parameters choice
    scheme_type = GeneticSchemeTypesEnum.steady_state
    optimiser_parameters = GPChainOptimiserParameters(
        genetic_scheme_type=scheme_type)

    # Create builder for composer and set composer params
    builder = GPComposerBuilder(
        task=task).with_requirements(composer_requirements).with_metrics(
            metric_function).with_optimiser_parameters(optimiser_parameters)

    # Create GP-based composer
    composer = builder.build()

    # the optimal chain generation by composition - the most time-consuming task
    chain_evo_composed = composer.compose_chain(data=dataset_to_compose,
                                                is_visualise=True)

    if with_tuning:
        chain_evo_composed.fine_tune_primary_nodes(
            input_data=dataset_to_compose, iterations=50, verbose=True)

    chain_evo_composed.fit(input_data=dataset_to_compose, verbose=True)

    if is_visualise:
        visualiser = ChainVisualiser()

        composer.log.info('History visualization started')
        visualiser.visualise_history(composer.history)
        composer.log.info('History visualization finished')
        composer.history.write_composer_history_to_csv()

        composer.log.info('Best chain visualization started')
        visualiser.visualise(chain_evo_composed)
        composer.log.info('Best chain visualization finished')

    # the quality assessment for the obtained composite models
    roc_on_valid_evo_composed = calculate_validation_metric(
        chain_evo_composed, dataset_to_validate)

    print(f'Composed ROC AUC is {round(roc_on_valid_evo_composed, 3)}')

    return roc_on_valid_evo_composed
Example #4
0
        chain.add_node(root_node_child)
        root_of_tree.nodes_from.append(root_node_child)

    chain.add_node(root_of_tree)
    return chain


def generate_history(generations, pop_size):
    history = ComposingHistory()
    for gen in range(generations):
        new_pop = []
        for idx in range(pop_size):
            chain = chain_first()
            chain.fitness = 1 / (gen * idx + 1)
            new_pop.append(chain)
        history.add_to_history(new_pop)
    return history


if __name__ == '__main__':
    generations = 2
    pop_size = 10

    chain = chain_first()

    history = generate_history(generations, pop_size)

    visualiser = ChainVisualiser()
    visualiser.visualise_history(history)
    visualiser.visualise(chain)
def run_credit_scoring_problem(
        train_file_path,
        test_file_path,
        max_lead_time: datetime.timedelta = datetime.timedelta(minutes=5),
        is_visualise=False,
        with_tuning=False,
        cache_path=None):
    task = Task(TaskTypesEnum.classification)
    dataset_to_compose = InputData.from_csv(train_file_path, task=task)
    dataset_to_validate = InputData.from_csv(test_file_path, task=task)

    # the search of the models provided by the framework that can be used as nodes in a chain for the selected task
    available_model_types = get_operations_for_task(task=task, mode='models')

    # the choice of the metric for the chain quality assessment during composition
    metric_function = ClassificationMetricsEnum.ROCAUC_penalty
    # the choice and initialisation of the GP search
    composer_requirements = GPComposerRequirements(
        primary=available_model_types,
        secondary=available_model_types,
        max_arity=3,
        max_depth=3,
        pop_size=20,
        num_of_generations=20,
        crossover_prob=0.8,
        mutation_prob=0.8,
        max_lead_time=max_lead_time)

    # GP optimiser parameters choice
    scheme_type = GeneticSchemeTypesEnum.parameter_free
    optimiser_parameters = GPChainOptimiserParameters(
        genetic_scheme_type=scheme_type)

    # Create builder for composer and set composer params
    logger = default_log('FEDOT logger', verbose_level=4)
    builder = GPComposerBuilder(task=task).with_requirements(composer_requirements). \
        with_metrics(metric_function).with_optimiser_parameters(optimiser_parameters).with_logger(logger=logger)

    if cache_path:
        builder = builder.with_cache(cache_path)

    # Create GP-based composer
    composer = builder.build()

    # the optimal chain generation by composition - the most time-consuming task
    chain_evo_composed = composer.compose_chain(data=dataset_to_compose,
                                                is_visualise=True)

    if with_tuning:
        # TODO Add tuning
        raise NotImplementedError(f'Tuning is not supported')

    chain_evo_composed.fit(input_data=dataset_to_compose)

    composer.history.write_composer_history_to_csv()

    if is_visualise:
        visualiser = ChainVisualiser()

        composer.log.debug('History visualization started')
        visualiser.visualise_history(composer.history)
        composer.log.debug('History visualization finished')

        composer.log.debug('Best chain visualization started')
        visualiser.visualise(chain_evo_composed)
        composer.log.debug('Best chain visualization finished')

    # the quality assessment for the obtained composite models
    roc_on_valid_evo_composed = calculate_validation_metric(
        chain_evo_composed, dataset_to_validate)

    print(f'Composed ROC AUC is {round(roc_on_valid_evo_composed, 3)}')

    return roc_on_valid_evo_composed