Example #1
0
    def _evaluate_fermat(self, n):
        start_init_time = time()
        fermat = Fermat(n, progress=False)
        end_init_time = time()

        start_search_time = time()
        res = fermat.search()
        end_search_time = time()

        self.init_times.append(end_init_time - start_init_time)
        self.search_times.append(end_search_time - start_search_time)
        self.res_list.append(res)
        self.primes_used_list.append([])
        self.R_size_list.append(0)
        self.total_i_list.append(fermat.total_i)
        self.last_j_list.append(0)
        self.last_r_list.append(fermat.p_plus_q)
        self.T_list.append(fermat.p_plus_q - fermat.sqrt_n + 1)
        Tp = fermat.total_i + 1
        self.Tp_list.append(Tp)
        del fermat

        start_qs_time = time()
        qs_res = qs.factor(n)
        end_qs_time = time()
        self.qs_times.append(end_qs_time - start_qs_time)
        self.qs_res_list.append(qs_res)
Example #2
0
def compute_knn_geodesic_distance(data, k):
    
    distances = distance_matrix(data,data)

    # Initialize the model
    f_aprox_D = Fermat(1, path_method='D', k=k) 

    # Fit
    f_aprox_D.fit(distances)
    knn_dist = f_aprox_D.get_distances() 
    
    return knn_dist
Example #3
0
def compute_fermat_distance_D(data, p, k):

    #Compute euclidean distances
    distances = distance_matrix(data, data)

    # Initialize the model
    fermat = Fermat(alpha=p, path_method='D', k=k)  #method Dijkstra

    # Fit
    fermat.fit(distances)

    ##Compute Fermat distances
    fermat_dist = fermat.get_distances()

    return fermat_dist
Example #4
0
def compute_kNN_distance(data, k):
    '''
    Computes the  estimator of geodesic distance using kNN graph.
    '''

    distances = distance_matrix(data, data)

    # Initialize the model
    f_aprox_D = Fermat(1, path_method='D', k=k)

    # Fit
    f_aprox_D.fit(distances)
    adj_dist = f_aprox_D.get_distances()

    return adj_dist
Example #5
0
def compute_fermat_distances(data, alpha):

    #Compute euclideandistances
    distances = distance_matrix(data, data)

    # Initialize the model
    fermat = Fermat(alpha=alpha, path_method='FW')

    # Fit
    fermat.fit(distances)

    ##Compute Fermat distances
    fermat_dist = fermat.get_distances()

    return fermat_dist
Example #6
0
File: attacks.py Project: Binzt/CTF
    def fermat(self):

        path = getcwd() + '/Attacks/Fermat'
        sys.path.append(path)
        from fermat import Fermat
        fermat = Fermat(self.args.n, self.args.e)
        d = fermat.d
Example #7
0
def compute_fermat_distance(data, p):
    '''
    Computes the sample Fermat distance.
    '''

    #Compute euclidean distances
    distances = distance_matrix(data, data)

    # Initialize the model
    fermat = Fermat(alpha=p, path_method='FW')  # method Floyd-Warshall

    # Fit
    fermat.fit(distances)

    ##Compute Fermat distances
    fermat_dist = fermat.get_distances()

    return fermat_dist
Example #8
0
def fermat_distance_matrix(X,
                           metric="euclidean",
                           scale=True,
                           d=3,
                           k=10,
                           landmarks=50):
    '''
    Parameters
    ----------
    X : GENOTYPE MATRIX (NxSNPs- rows are individuals)
    distance :  STR
        Distance used to calculate fermat distance. The default is "euclidean".
    scale : BOOL.
        Wether to scale distances prior to fermat estimation. The default is True.
    d : INT, optional
        Related to size of latent Space/Manifold dim.
    k : INT, optional
        Number of neighbours used in estimation. Larger is more exact but has more computational cost. The default is 10.
    landmarks : INT, optional
        See fermat docs. The default is 50.

    Returns
    -------
    None.

    '''
    if metric == "euclidean":
        dist = euclidean_distances(X.T, X.T)
    else:
        raise NotImplementedError
    if scale:
        avg = np.mean(dist)
        if avg == 0:
            avg = avg + 10e-10
        dist = dist / avg
    fermat = Fermat(d, path_method='L', k=k, landmarks=landmarks)
    print("calculating fermat approx distances")
    fermat.fit(dist)
    fermat_distances = fermat.get_distances()
    return fermat_distances
Example #9
0
def reduce_dim(geno_train, method = "kpca", codif = "no_codif"):
    '''
    Get 2D SNP features.
    Input
    -----
        geno_train: 2D Nxp array (N: samples, p: markers.)
        method: dimension reduction method (kPCA, tSNE, AE)
        codif: input codification (no_codif vs OHE)
    Output
    ------
        features_2d: 2D 2xp array with extracted features (cartesian coordinates)
    '''
    if method == "kpca":
        kpca = KernelPCA(n_components = 2)
        features_2d = kpca.fit_transform(geno_train.T)
    elif method == "tsne":
        if multi:
            tsne = multi_TSNE(n_jobs=-1)
        else:
            tsne = TSNE()
        features_2d = tsne.fit_transform(geno_train.T)    
    elif method == "fermat":
        print("calculating euclidean distances")
        X = euclidean_distances(geno_train.T, geno_train.T)
        avg = np.mean(X)
        if  avg == 0:
            avg = avg+10e-10
        X = X / avg
        fermat = Fermat(3, path_method='L', k=10, landmarks=50)
        print("calculating fermat approx distances")
        fermat.fit(X)
        distances = fermat.get_distances()
        tsne = TSNE(metric ='precomputed')
        print("fitting TSNE")
        features_2d = tsne.fit_transform(distances) 
        cal  = str(date.today())
    pickle.dump( features_2d, open( f"features_{cal}.p", "wb" ) )
    return features_2d
Example #10
0
#    course lectured in Federal University of Santa Catarina.
import time
from lcg import LCG
from blumblumshub import BBS
from millerrabin import Millerrabin
from fermat import Fermat

##
#    Funcao main que ira gerar os numeros primos
if __name__ == '__main__':
    tamanhos = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048,
                4096]  #Tamanhos dos numeros que serao gerados pelos geradores

    lcg = LCG(74573)  #semente do LCG
    miller = Millerrabin(5)  #5 iteracoes
    fermat = Fermat(5)  #5 iteracoes

    outFile = open("numeroPrimos.txt", "wb")

    #Testando LCG com Miller
    print "Gerando possiveis numeros primos com LCG e Miller.\n"
    start_lcg_miller_time = time.time()
    outFile.write("Possiveis numeros primos gerados por LCG e Miller: \n")
    for m in tamanhos:
        while True:
            numeroPrimo = lcg.gerador(m, 1103515245, 12345)
            if miller.teste(numeroPrimo):
                outFile.write(str(numeroPrimo) + "\n")
                print "Um possivel numero primo de tamanho ", m, " bits foi gerado em ", (
                    time.time() - start_lcg_miller_time), " segundos."
                break