def get_fc(u): fc = fermionchain.Fermionic_Hamiltonian(n) # create the chain ####### Input matrices ####### # Array with the hoppings and with hubbard couplings # These are the matrices that you have to modify hopping = np.zeros((n, n)) hubbard = np.zeros((n, n)) for i in range(n - 1): hopping[i, i + 1] = 1. hopping[i + 1, i] = 1. for i in range(n): U = u hubbard[i, i] = U / 2. hopping[i, i] = -U # The implemented Hamiltonian is # H = \sum_ij hopping[i,j] c^dagger_i c_j + hubbard[i,j] n_i n_j # with n_i = c^\dagger_{i,up} c_{i,up} + c^\dagger_{i,dn} c_{i,dn} # the previous matrices are for a half filled Hubbard chain ############################## # Setup the Many Body Hamiltonian fc.set_hoppings(lambda i, j: hopping[i, j]) # set the hoppings fc.set_hubbard(lambda i, j: hubbard[i, j]) # set the hubbard constants #fc.set_fields(lambda i: [0.,0.,0.2]) # set the hubbard constants #fc.nsweeps = 7 # Compute the dynamical correlator defined by # <0|c_i^dagger \delta(H-E_0-\omega) c_j |0> i = 0 # first index of the dynamical correlator j = 0 # second index of the dynamical correlator delta = 0.1 # energy resolution (approximate) fc.nsweeps = 6 fc.kpmmaxm = 20 # maximum bond dimension in KPM return fc
# Add the root path of the dmrgpy library import os import sys sys.path.append(os.getcwd() + '/../../src') import numpy as np import matplotlib.pyplot as plt import fermionchain n = 10 sc = fermionchain.Fermionic_Hamiltonian(n) # create the chain def ft(i, j): # if i==j: return 1.0 if abs(j - i) == 1: return 1.0 #+ np.random.random() if i == j: return np.random.random() # if i==j: return 1.1 return 0.0 sc.set_hoppings(ft) # hoppings import time #e0 = sc.gs_energy() # compute ground state energy with DMRG e1 = sc.gs_energy_free() # compute ground state energy for free electrons print("Free", e1) sc.nsweeps = 1 es = [] # empty list wf0 = None # no initial wavefunction for i in range(10): sc.nsweeps = 1 # do nothing e = sc.gs_energy(wf0=sc.wf0)