Example #1
0
def fitnessFunction(genotype):
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    # Task 1
    body = invpend.InvPendulum()
    fit = 0.0
    for theta in theta_range_IP:
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            for t in time_IP:
                nn.step(np.concatenate((body.state(),np.zeros(4),np.zeros(3)))) #arrays for inputs for each task
                f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                if f < 0:
                    f = 0
                fit += f
    fitness1 = fit/(duration_IP*total_trials_IP)
    fitness1 = ((fitness1+7.65)/7) # Normalize to run between 0 and 1
    #print('fitness1',fitness1)

    # Task 2
    body = cartpole.Cartpole()
    fit = 0.0
    for theta in theta_range_CP:
        for theta_dot in thetadot_range_CP:
            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    for t in time_CP:
                        nn.step(np.concatenate((np.zeros(3),body.state(),np.zeros(3))))
                        f = body.step(stepsize_CP, np.array([nn.output()[1]]))
                        fit += f
    fitness2 = fit/(duration_CP*total_trials_CP)
    #print('fitness2',fitness2)

    #Task 3
    body = leggedwalker.LeggedAgent(0.0,0.0)
    fit = 0.0
    for theta in theta_range_LW:
        for omega in omega_range_LW:
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time_LW:
                nn.step(np.concatenate((np.zeros(3),np.zeros(4),body.state())))
                body.step(stepsize_LW, np.array(nn.output()[2:5]))
            fit += body.cx/duration_LW
            if fit < 0:
                fit = 0
    fitness3 = ((fit/total_trials_LW)/MaxFit)
    #print('fitness3',fitness3)
    #print('overallfitness',fitness1*fitness2*fitness3)
    return fitness1*fitness2*fitness3
Example #2
0
def fitnessFunction(genotype):
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    # Task 1
    body = invpend.InvPendulum()
    fit = 0.0
    for theta in theta_range_IP:
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            for t in time_IP:
                nn.step(np.concatenate((body.state(),np.zeros(4),np.zeros(3)))) #arrays for inputs for each task             
                f = body.step(stepsize_IP, np.concatenate(((nn.output() + np.random.normal(0.0,noisestd)),np.zeros(2))))
                fit += f
    fitness1 = fit/(duration_IP*total_trials_IP)
    fitness1 = (fitness1+7.65)/7 # Normalize to run between 0 and 1
    #save data from fitnesses of tasks 
    #np.save('Fitness_invpend',fitness1)
    
    # Task 2
    body = cartpole.Cartpole()
    fit = 0.0
    for theta in theta_range_CP:
        for theta_dot in thetadot_range_CP:
            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    for t in time_CP:
                        nn.step(np.concatenate((np.zeros(3),body.state(),np.zeros(3))))
                        f = body.step(stepsize_IP, nn.output() + np.random.normal(0.0,noisestd))
                        #f = body.step(stepsize_IP, nn.output())
                        f = body.step(stepsize_CP, np.concatenate(((nn.output() + np.random.normal(0.0,noisestd)),np.zeros(2))))
                        fit += f
    fitness2 = fit/(duration_CP*total_trials_CP)
    #np.save('Fitness_cartpole',fitness2)
    
    #Task 3
    body = leggedwalker.LeggedAgent(0.0,0.0)
    fit = 0.0
    for theta in theta_range_LW:
        for omega in omega_range_LW:   
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time_LW:
                nn.step(np.concatenate((np.zeros(3),np.zeros(4),body.state())))
                body.step(stepsize_LW, nn.output() + np.random.normal(0.0,noisestd))
            fit += body.cx/duration_LW
    fitness3 = (fit/total_trials_LW)/MaxFit
    #np.save('Fitness_legged',fitness3)
    return fitness1*fitness2*fitness3
Example #3
0
def fitnessFunction(genotype):
    nn = ffann.ANN(nI, nH1, nH2, nO)
    nn.setParameters(genotype, WeightRange, BiasRange)
    body = leggedwalker.LeggedAgent(0.0, 0.0)
    fit = 0.0
    for theta in theta_range:
        for omega in omega_range:
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time:
                nn.step(body.state())
                body.step(stepsize,
                          nn.output() + np.random.normal(0.0, noisestd))
            fit += body.cx / duration
    return (fit / total_trials) / MaxFit
Example #4
0
def fitnessFunction(genotype):
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    body = mountaincar_cont.MountainCarAgent(0.0)
    fit = 0.0
    for theta in theta_range:
        for velocity in velocity_range:
            for position in position_range:
                body.theta = theta
                body.position = position
                body.velocity = velocity
                for t in time:
                    nn.step(body.state())
                    f = body.step(stepsize,nn.output()+np.random.normal(0.0,noisestd))
                    fit += f
    fitness = fit/(duration*total_trials)
    return fitness
Example #5
0
def plot(g):
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    body = mountaincar_cont.MountainCarAgent(0.0)
    out_hist = np.zeros((DurationSteps,nO))
    velocity = np.zeros(DurationSteps)
    time = np.arange(0,duration,stepsize)
    #t = 0.0
    for i in range(DurationSteps):
        nn.step(body.state())
        body.step(stepsize, nn.output() + np.random.normal(0.0,noisestd))
        out_hist[i] = nn.output()
        velocity[i] = body.vx
    plt.plot(time, velocity)
    plt.xlabel('Time')
    plt.ylabel('Outputs')
    plt.axis([0, duration, -0.1, 1.1])
    plt.show()
    plt.plot(time, out_hist)
    plt.xlabel('Time')
    plt.ylabel('Outputs')
    plt.show()
def performance_analysis(genotype):
    # Common setup
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    Hidden1_Avg = np.zeros((3,nH1))
    Hidden2_Avg = np.zeros((3,nH2))

    # Task 1
    body = invpend.InvPendulum()
    fit_cum = 0.0
    fip = np.zeros(x,y)
    total_steps = len(time_IP)*total_trials_IP
    i = 0
    for theta in theta_range_IP:
        j = 0 
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            fit=0.0
            for t in time_IP:
                nn.step(np.concatenate((body.state(),np.zeros(4),np.zeros(3)))) #arrays for inputs for each task
                Hidden1_Avg[0] += nn.Hidden1Activation/total_steps
                Hidden2_Avg[0] += nn.Hidden2Activation/total_steps
                f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                fit += f
            fip[i][j] = fit/duration_IP
            fit_cum += fit/duration_IP
            j += 1
        i += 1
    fitness1 = fit/total_trials_IP
    fitness1 = (fitness1+7.65)/7 # Normalize to run between 0 and 1
    np.save('ip_hidden_1', Hidden1_Avg[0])
    np.save('ip_hidden_2', Hidden2_Avg[0])


    # Task 2
    
    #for behaviors: make i and j: theta and theta_dot
    #x and xdot == make those values the average of all visuzliations
    
    body = cartpole.Cartpole()
    fit = 0.0
    total_steps = len(time_CP)*total_trials_CP
    for theta in theta_range_CP:
        for theta_dot in thetadot_range_CP:
            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    for t in time_CP:
                        nn.step(np.concatenate((np.zeros(3),body.state(),np.zeros(3))))
                        Hidden1_Avg[1] += nn.Hidden1Activation/total_steps
                        Hidden2_Avg[1] += nn.Hidden2Activation/total_steps
                        f = body.step(stepsize_CP, np.array([nn.output()[1]]))
                        fit += f
    fitness2 = fit/(duration_CP*total_trials_CP)
    np.save('cp_hidden_1', Hidden1_Avg[1])
    np.save('cp_hidden_2', Hidden2_Avg[1])

    #Task 3
    body = leggedwalker.LeggedAgent(0.0,0.0)
    fit = 0.0
    total_steps = len(time_LW)*total_trials_LW
    for theta in theta_range_LW:
        for omega in omega_range_LW:
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time_LW:
                nn.step(np.concatenate((np.zeros(3),np.zeros(4),body.state())))
                Hidden1_Avg[2] += nn.Hidden1Activation/total_steps
                Hidden2_Avg[2] += nn.Hidden2Activation/total_steps
                body.step(stepsize_LW, np.array(nn.output()[2:5]))
            fit += body.cx/duration_LW
    fitness3 = (fit/total_trials_LW)/MaxFit
    np.save('lw_hidden_1', Hidden1_Avg[2])
    np.save('lw_hidden_2', Hidden2_Avg[2])
    return fitness1,fitness2,fitness3,Hidden1_Avg,Hidden2_Avg,fip
Example #7
0
def analysis(genotype):
    # Common setup
    nn = ffann.ANN(nI,nH1,nH2,nO)
    nn.setParameters(genotype,WeightRange,BiasRange)
    fitness = np.zeros(3)

    # Task 1
    body = invpend.InvPendulum()
    nn_state_ip = np.zeros((total_trials_IP*len(time_IP),nI+nH1+nH2+nO))
    total_steps = len(theta_range_IP) * len(thetadot_range_IP) * len(time_IP)
    fit_IP = np.zeros((len(theta_range_IP),len(thetadot_range_IP)))
    i=0
    k=0
    for theta in theta_range_IP:
        j=0
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            f = 0.0
            for t in time_IP:
                nn.step(np.concatenate((body.state(),np.zeros(4),np.zeros(3)))) #arrays for inputs for each task
                nn_state_ip[k] = nn.states()
                k += 1
                f += body.step(stepsize_IP, np.array([nn.output()[0]]))
            fit_IP[i][j] = ((f/duration_IP)+7.65)/7
            j += 1
        i += 1
    fitness[0] = np.mean(fit_IP)

    # Task 2
    body = cartpole.Cartpole()
    nn_state_cp = np.zeros((total_trials_CP*len(time_CP),nI+nH1+nH2+nO))
    total_steps = len(theta_range_CP) * len(thetadot_range_CP) * len(x_range_CP) * len(xdot_range_CP) * len(time_CP)
    fit_CP = np.zeros((len(theta_range_CP),len(thetadot_range_CP)))
    i = 0
    k = 0
    for theta in theta_range_CP:
        j = 0
        for theta_dot in thetadot_range_CP:
            f_cumulative = 0
            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    f = 0.0
                    for t in time_CP:
                        nn.step(np.concatenate((np.zeros(3),body.state(),np.zeros(3))))
                        nn_state_cp[k] = nn.states()
                        k += 1
                        f_temp,d = body.step(stepsize_CP, np.array([nn.output()[1]]))
                        f += f_temp
                    f_cumulative += f/duration_CP
            fit_CP[i][j] = f_cumulative/(len(x_range_CP)*len(xdot_range_CP))
            j += 1
        i += 1
    fitness[1] = np.mean(fit_CP)

    #Task 3
    body = leggedwalker.LeggedAgent(0.0,0.0)
    nn_state_lw = np.zeros((total_trials_LW*len(time_LW),nI+nH1+nH2+nO))
    total_steps = len(theta_range_LW) * len(omega_range_LW) * len(time_LW)
    fit_LW = np.zeros((len(theta_range_LW),len(omega_range_LW)))
    i = 0
    k = 0
    for theta in theta_range_LW:
        j = 0
        for omega in omega_range_LW:
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time_LW:
                nn.step(np.concatenate((np.zeros(3),np.zeros(4),body.state())))
                nn_state_lw[k] = nn.states()
                k += 1
                body.step(stepsize_LW, np.array(nn.output()[2:5]))
            fit_LW[i][j] = (body.cx/duration_LW)/MaxFit
            j += 1
        i += 1
    fitness[2] = np.mean(fit_LW)
    return fitness,fit_IP,fit_CP,fit_LW,nn_state_ip,nn_state_cp,nn_state_lw
Example #8
0
def lesions(genotype,actvalues):

    nn = ffann.ANN(nI,nH1,nH2,nO)

    # Task 1
    ip_fit = np.zeros(nH1+nH2)
    body = invpend.InvPendulum()
    nn.setParameters(genotype,WeightRange,BiasRange)
    index = 0
    for layer in [1,2]:
        for neuron in range(nH1):
            if layer == 1:
                n = neuron
            else:
                n = nH1 + neuron
            print("IP:",n)
            maxfit = 0.0
            for act in actvalues[:,0,n]:
                fit = 0.0
                for theta in theta_range_IP:
                    for theta_dot in thetadot_range_IP:
                        body.theta = theta
                        body.theta_dot = theta_dot
                        for t in time_IP:
                            nn.step_lesioned(np.concatenate((body.state(),np.zeros(4),np.zeros(3))),neuron,layer,act)
                            f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                            fit += f
                fit = fit/(duration_IP*total_trials_IP)
                fit = (fit+7.65)/7
                if fit < 0.0:
                    fit = 0.0
                if fit < maxfit:
                    maxfit = fit
            ip_fit[index]=fit
            index += 1

    # Task 2
    cp_fit = np.zeros(nH1+nH2)
    body = cartpole.Cartpole()
    nn.setParameters(genotype,WeightRange,BiasRange)
    index = 0
    for layer in [1,2]:
        for neuron in range(nH1):
            if layer == 1:
                n = neuron
            else:
                n = nH1 + neuron
            print("CP:",n)
            maxfit = 0.0
            for act in actvalues[:,1,n]:
                fit = 0.0
                for theta in theta_range_CP:
                    for theta_dot in thetadot_range_CP:
                        for x in x_range_CP:
                            for x_dot in xdot_range_CP:
                                body.theta = theta
                                body.theta_dot = theta_dot
                                body.x = x
                                body.x_dot = x_dot
                                for t in time_CP:
                                    nn.step_lesioned(np.concatenate((np.zeros(3),body.state(),np.zeros(3))),neuron,layer,act)
                                    f,d = body.step(stepsize_CP, np.array([nn.output()[1]]))
                                    fit += f
                fit = fit/(duration_CP*total_trials_CP)
                if fit < 0.0:
                    fit = 0.0
                if fit < maxfit:
                    maxfit = fit
            cp_fit[index]=fit
            index += 1

    #Task 3
    lw_fit = np.zeros(nH1+nH2)
    body = leggedwalker.LeggedAgent(0.0,0.0)
    nn.setParameters(genotype,WeightRange,BiasRange)
    index = 0
    for layer in [1,2]:
        for neuron in range(nH1):
            if layer == 1:
                n = neuron
            else:
                n = nH1 + neuron
            print("LW:",n)
            maxfit = 0.0
            for act in actvalues[:,2,n]:
                fit = 0.0
                for theta in theta_range_LW:
                    for omega in omega_range_LW:
                        body.reset()
                        body.angle = theta
                        body.omega = omega
                        for t in time_LW:
                            nn.step_lesioned(np.concatenate((np.zeros(3),np.zeros(4),body.state())),neuron,layer,act)
                            body.step(stepsize_LW, np.array(nn.output()[2:5]))
                        fit += body.cx/duration_LW
                fit = (fit/total_trials_LW)/MaxFit
                if fit < 0.0:
                    fit = 0.0
                if fit < maxfit:
                    maxfit = fit
            lw_fit[index]=fit
            index += 1

    return ip_fit,cp_fit,lw_fit
Example #9
0
def performance_analysis(genotype):
    # Common setup
    nn = ffann.ANN(nI, nH1, nH2, nO)
    nn.setParameters(genotype, WeightRange, BiasRange)
    Hidden1_Avg = np.zeros((3, nH1))
    Hidden2_Avg = np.zeros((3, nH2))

    # Task 1
    body = invpend.InvPendulum()
    fit_cum = 0.0
    s = (6, 6)
    fip = np.zeros(s)  #behavior matrix
    total_steps = len(time_IP) * total_trials_IP
    i = 0
    for theta in theta_range_IP:
        j = 0
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            fit = 0.0
            for t in time_IP:
                nn.step(
                    np.concatenate(
                        (body.state(), np.zeros(4),
                         np.zeros(3))))  #arrays for inputs for each task
                Hidden1_Avg[0] += nn.Hidden1Activation / total_steps
                Hidden2_Avg[0] += nn.Hidden2Activation / total_steps
                f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                fit += f
                fit_cum += f

            fit_cum = fit_cum / duration_IP
            fip[i][j] = fit / duration_IP
            j += 1
        i += 1
    fitness1 = fit_cum / (duration_IP * total_trials_IP)
    fitness1 = (fitness1 + 7.65) / 7  # Normalize to run between 0 and 1
    #print('ip hidden1',Hidden1_Avg[0])
    #print('ip hidden2',Hidden2_Avg[0])
    #print(fip)
    fig, ax = plt.subplots()
    ax.matshow(fip, cmap=plt.cm.Blues)
    fip = np.around(fip, decimals=2)
    for o in range(i):
        for n in range(j):
            c = fip[n, o]
            ax.text(o, n, str(c), va='center', ha='center')
    plt.title('Theta VS theta_dot Behavior: IP', fontsize=13)
    plt.show()

    # Task 2
    body = cartpole.Cartpole()
    fit_cum = 0.0
    s = (2, 2)
    fip = np.zeros(s)
    total_steps = len(time_CP) * total_trials_CP
    i = 0
    for theta in theta_range_CP:
        j = 0
        for theta_dot in thetadot_range_CP:

            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    fit = 0.0
                    for t in time_CP:
                        nn.step(
                            np.concatenate(
                                (np.zeros(3), body.state(), np.zeros(3))))
                        Hidden1_Avg[1] += nn.Hidden1Activation / total_steps
                        Hidden2_Avg[1] += nn.Hidden2Activation / total_steps
                        f = body.step(stepsize_CP, np.array([nn.output()[1]]))

                        fit_cum += f
                        fit += f

                    #fit_cum = fit_cum/duration_CP
                    fip[i][j] = fit / duration_CP
            j += 1
        i += 1
    fitness2 = fit_cum / (duration_CP * total_trials_CP)
    fig, ax = plt.subplots()
    ax.matshow(fip, cmap=plt.cm.Blues)
    fip = np.around(fip, decimals=2)
    for o in range(i):
        for n in range(j):
            c = fip[n, o]
            ax.text(o, n, str(c), va='center', ha='center')
    plt.title('Theta VS theta_dot Behavior: CP', fontsize=13)
    plt.show()

    #Task 3
    body = leggedwalker.LeggedAgent(0.0, 0.0)
    fit_cum = 0.0
    s = (3, 3)
    fip = np.zeros(s)
    total_steps = len(time_LW) * total_trials_LW
    i = 0
    for theta in theta_range_LW:
        j = 0
        for omega in omega_range_LW:
            body.reset()
            body.angle = theta
            body.omega = omega
            fit = 0.0
            for t in time_LW:
                nn.step(
                    np.concatenate((np.zeros(3), np.zeros(4), body.state())))
                Hidden1_Avg[2] += nn.Hidden1Activation / total_steps
                Hidden2_Avg[2] += nn.Hidden2Activation / total_steps
                body.step(stepsize_LW, np.array(nn.output()[2:5]))

            fit_cum += body.cx / duration_LW
            fip[i][j] += body.cx / duration_LW
            j += 1
        i += 1
    fitness3 = (fit_cum / total_trials_LW) / MaxFit

    fig, ax = plt.subplots()
    ax.matshow(fip, cmap=plt.cm.Blues)
    fip = np.around(fip, decimals=2)
    for o in range(i):
        for n in range(j):
            c = fip[n, o]
            ax.text(o, n, str(c), va='center', ha='center')
    plt.title('Theta VS Omega Behavior: LW', fontsize=13)
    plt.show()

    return fitness1, fitness2, fitness3, Hidden1_Avg, Hidden2_Avg
Example #10
0
def single_neuron_ablations(genotype):
    nn = ffann.ANN(nI, nH1, nH2, nO)

    # Task 1
    ip_fit = np.zeros(nH1 + nH2)
    body = invpend.InvPendulum()
    index = 0
    for neuron in range(nI, nI + nH1 +
                        nH2):  #iterates through each neuron (20 neurons)
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(neuron)
        for theta in theta_range_IP:
            for theta_dot in thetadot_range_IP:
                body.theta = theta
                body.theta_dot = theta_dot
                for t in time_IP:
                    nn.step(
                        np.concatenate(
                            (body.state(), np.zeros(4), np.zeros(3))))
                    f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                    fit += f
        fit = fit / (duration_IP * total_trials_IP)
        fit = (fit + 7.65) / 7  # Normalize to run between 0 and 1
        if fit < 0.0:
            fit = 0.0
        ip_fit[index] = fit
        index += 1

    # Task 2
    cp_fit = np.zeros(nH1 + nH2)
    body = cartpole.Cartpole()
    index = 0
    for neuron in range(nI, nI + nH1 + nH2):
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(neuron)  #isolates each neuron, sets outdegree to 0
        for theta in theta_range_CP:
            for theta_dot in thetadot_range_CP:
                for x in x_range_CP:
                    for x_dot in xdot_range_CP:
                        body.theta = theta
                        body.theta_dot = theta_dot
                        body.x = x
                        body.x_dot = x_dot
                        for t in time_CP:
                            nn.step(
                                np.concatenate(
                                    (np.zeros(3), body.state(), np.zeros(3))))
                            f = body.step(stepsize_CP,
                                          np.array([nn.output()[1]]))
                            fit += f
        fit = fit / (duration_CP * total_trials_CP)
        if fit < 0.0:
            fit = 0.0
        cp_fit[index] = fit
        index += 1

    #Task 3
    lw_fit = np.zeros(nH1 + nH2)
    body = leggedwalker.LeggedAgent(0.0, 0.0)
    index = 0
    for neuron in range(nI, nI + nH1 + nH2):
        #print(neuron)
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(neuron)
        for theta in theta_range_LW:
            for omega in omega_range_LW:
                body.reset()
                body.angle = theta
                body.omega = omega
                for t in time_LW:
                    nn.step(
                        np.concatenate(
                            (np.zeros(3), np.zeros(4), body.state())))
                    body.step(stepsize_LW, np.array(nn.output()[2:5]))
                fit += body.cx / duration_LW  # XXX
        fit = (fit / total_trials_LW) / MaxFit
        if fit < 0.0:
            fit = 0.0
        lw_fit[index] = fit
        index += 1

    return ip_fit, cp_fit, lw_fit
Example #11
0
def fitnessFunction(genotype):
    nn = ffann.ANN(nI, nH1, nH2, nO)
    nn.setParameters(genotype, WeightRange, BiasRange)
    # Task 1
    body = invpend.InvPendulum()
    fit = 0.0
    for theta in theta_range_IP:
        for theta_dot in thetadot_range_IP:
            body.theta = theta
            body.theta_dot = theta_dot
            for t in time_IP:
                # nn.step(np.concatenate((body.state(),np.zeros(4),np.zeros(3),np.zeros(2)))) #arrays for inputs for each task
                nn.step(
                    np.concatenate(
                        (body.state(), np.zeros(4),
                         np.zeros(3))))  #arrays for inputs for each task
                f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                fit += f  # Minimize the cost of moving the pole up
    fitness1 = fit / (duration_IP * total_trials_IP)
    fitness1 = (fitness1 + 7.65) / 7  # Normalize to run between 0 and 1
    if fitness1 < 0.0:
        fitness1 = 0.0

    # Task 2
    body = cartpole.Cartpole()
    fit = 0.0
    for theta in theta_range_CP:
        for theta_dot in thetadot_range_CP:
            for x in x_range_CP:
                for x_dot in xdot_range_CP:
                    body.theta = theta
                    body.theta_dot = theta_dot
                    body.x = x
                    body.x_dot = x_dot
                    for t in time_CP:
                        # nn.step(np.concatenate((np.zeros(3),body.state(),np.zeros(3),np.zeros(2))))
                        nn.step(
                            np.concatenate(
                                (np.zeros(3), body.state(), np.zeros(3))))
                        f, done = body.step(stepsize_CP,
                                            np.array([nn.output()[1]]))
                        fit += f  # (Maximize) Amount of time pole is balanced
                        ###
                        if done:
                            break
    fitness2 = fit / (duration_CP * total_trials_CP)
    if fitness2 < 0.0:
        fitness2 = 0.0

    #Task 3
    body = leggedwalker.LeggedAgent(0.0, 0.0)
    fit = 0.0
    for theta in theta_range_LW:
        for omega in omega_range_LW:
            body.reset()
            body.angle = theta
            body.omega = omega
            for t in time_LW:
                # nn.step(np.concatenate((np.zeros(3),np.zeros(4),body.state(),np.zeros(2))))
                nn.step(
                    np.concatenate((np.zeros(3), np.zeros(4), body.state())))
                body.step(stepsize_LW, np.array(nn.output()[2:5]))
            fit += body.cx / duration_LW  # Maximize the final forward distance covered
    fitness3 = (fit / total_trials_LW) / MaxFit
    if fitness3 < 0.0:
        fitness3 = 0.0

    # # Task 4
    # body = mountaincar.MountainCar()
    # fit = 0.0
    # for position in position_range_MC:
    #     for velocity in velocity_range_MC:
    #         body.position = position
    #         body.velocity = velocity
    #         for t in time_MC:
    #             nn.step(np.concatenate((np.zeros(3),np.zeros(4),np.zeros(3),body.state())))
    #             f,done = body.step(stepsize_MC, np.array([nn.output()[5]]))
    #             fit += f
    #             if done:
    #                 break
    # fitness4 = ((fit/(duration_MC*total_trials_MC)) + 1.0)/0.65
    # return fitness1*fitness2*fitness3*fitness4
    return fitness1 * fitness2 * fitness3
Example #12
0
def single_neuron_ablations(genotype):
    nn = ffann.ANN(nI, nH1, nH2, nO)
    # Task 1
    ip_fit = np.zeros(nI + nH1 + nH2)  #empty array of all neurons
    body = invpend.InvPendulum()
    for i in range(
            nI + nH1 + nH2
    ):  #iterates through each neuron (20 neurons), creating a new network, each ablating through a different neuron
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(i)
        for theta in theta_range_IP:
            for theta_dot in thetadot_range_IP:
                body.theta = theta
                body.theta_dot = theta_dot
                for t in time_IP:
                    nn.step(
                        np.concatenate(
                            (body.state(), np.zeros(4), np.zeros(3))))
                    f = body.step(stepsize_IP, np.array([nn.output()[0]]))
                    fit += f

        fit = abs(fit / (duration_IP * total_trials_IP))
        fit = (fit + 7.65) / 7  # Normalize to run between 0 and 1
        ip_fit[i] = fit  #adds each neuron to matrix
    #print('ip fit:',ip_fit)

    # Task 2
    cp_fit = np.zeros(nI + nH1 + nH2)
    body = cartpole.Cartpole()
    for i in range(nI + nH1 + nH2):
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(i)  #isolates each neuron, sets outdegree to 0
        for theta in theta_range_CP:
            for theta_dot in thetadot_range_CP:
                for x in x_range_CP:
                    for x_dot in xdot_range_CP:
                        body.theta = theta
                        body.theta_dot = theta_dot
                        body.x = x
                        body.x_dot = x_dot
                        for t in time_CP:
                            nn.step(
                                np.concatenate(
                                    (np.zeros(3), body.state(), np.zeros(3))))
                            f = body.step(stepsize_CP,
                                          np.array([nn.output()[1]]))
                            fit += f
        fit = fit / (duration_CP * total_trials_CP)
        cp_fit[i] = fit
    print('cp fit:', cp_fit)

    #Task 3
    lw_fit = np.zeros(nI + nH1 + nH2)
    body = leggedwalker.LeggedAgent(0.0, 0.0)
    for i in range(nI + nH1 + nH2):
        #print("task3,each neuron",i)
        fit = 0.0
        nn.setParameters(genotype, WeightRange, BiasRange)
        nn.ablate(i)
        for theta in theta_range_LW:
            for omega in omega_range_LW:
                body.reset()
                body.angle = theta
                body.omega = omega
                for t in time_LW:
                    nn.step(
                        np.concatenate(
                            (np.zeros(3), np.zeros(4), body.state())))
                    body.step(stepsize_LW, np.array(nn.output()[2:5]))
                fit += body.cx / duration_LW
        fit = abs((fit / total_trials_LW) / MaxFit)
        #print(fit)
        lw_fit[i] = fit
    #print('lw fit:',lw_fit)

#print('ip fit',ip_fit)
#print('cp fit',cp_fit)
#print('lw fit',lw_fit)


# =============================================================================
#     X = np.arange(3)
#     fig = plt.figure()
#     ax = fig.add_axes([0,0,1,1])
# #
#     ax.bar(X + 0.00, ip_fit, color = 'b', width = 0.25)
#     ax.bar(X + 0.25, cp_fit, color = 'g', width = 0.25)
#     ax.bar(X + 0.50, lw_fit, color = 'r', width = 0.25)
# =============================================================================

# =============================================================================
    plt.plot(ip_fit, label='invpend')
    plt.plot(cp_fit, label='cartpole')
    plt.plot(lw_fit, label='leggedwalker')
    plt.legend()
    plt.show()
    # =============================================================================

    return ip_fit, cp_fit, lw_fit