def grad(X): if X.shape==(1,): shape=(X.dim,) else: shape=X.shape+(X.dim,) name='grad({0})'.format(X.name[:10]) gX=Tensor(name=name, shape=shape, N=X.N, Fourier=True, fft_form=X.fft_form) if X.Fourier: FX=X else: F=DFT(N=X.N, fft_form=X.fft_form) # TODO:change to X.fourier() FX=F(X) dim=len(X.N) freq=Grid.get_freq(X.N, X.Y, fft_form=X.fft_form) strfreq='xyz' coef=2*np.pi*1j val=np.empty((X.dim,)+X.shape+X.N_fft, dtype=np.complex) for ii in range(X.dim): mul_str='{0},...{1}->...{1}'.format(strfreq[ii], strfreq[:dim]) val[ii]=np.einsum(mul_str, coef*freq[ii], FX.val, dtype=np.complex) if X.shape==(1,): gX.val=np.squeeze(val) else: gX.val=np.moveaxis(val, 0, X.order) if not X.Fourier: iF=DFT(N=X.N, inverse=True, fft_form=gX.fft_form) gX=iF(gX) gX.name='grad({0})'.format(X.name[:10]) return gX
def div(X): if X.shape==(1,): shape=() else: shape=X.shape[:-1] assert(X.shape[-1]==X.dim) assert(X.order==1) dX=Tensor(shape=shape, N=X.N, Fourier=True, fft_form=X.fft_form) if X.Fourier: FX=X else: F=DFT(N=X.N, fft_form=X.fft_form) FX=F(X) dim=len(X.N) freq=Grid.get_freq(X.N, X.Y, fft_form=FX.fft_form) strfreq='xyz' coef=2*np.pi*1j for ii in range(X.dim): mul_str='{0},...{1}->...{1}'.format(strfreq[ii], strfreq[:dim]) dX.val+=np.einsum(mul_str, coef*freq[ii], FX.val[ii], dtype=np.complex) if not X.Fourier: iF=DFT(N=X.N, inverse=True, fft_form=dX.fft_form) dX=iF(dX) dX.name='div({0})'.format(X.name[:10]) return dX
def div(X): if X.shape == (1, ): shape = () else: shape = X.shape[:-1] assert (X.shape[-1] == X.dim) assert (X.order == 1) dX = Tensor(shape=shape, N=X.N, Fourier=True, fft_form=X.fft_form) if X.Fourier: FX = X else: F = DFT(N=X.N, fft_form=X.fft_form) FX = F(X) dim = len(X.N) freq = Grid.get_freq(X.N, X.Y, fft_form=FX.fft_form) strfreq = 'xyz' coef = 2 * np.pi * 1j for ii in range(X.dim): mul_str = '{0},...{1}->...{1}'.format(strfreq[ii], strfreq[:dim]) dX.val += np.einsum(mul_str, coef * freq[ii], FX.val[ii], dtype=np.complex) if not X.Fourier: iF = DFT(N=X.N, inverse=True, fft_form=dX.fft_form) dX = iF(dX) dX.name = 'div({0})'.format(X.name[:10]) return dX
def shrink(self): # shrink spectrum to size N+1 from 2N+1 if not self.Fourier: raise ('Tensor is in Physical space') #self.dct() smaller = Tensor(name='gradient', N=np.array(np.divide(np.add(self.N, 1), 2), dtype=np.int), shape=self.shape, multype='grad') for d in np.ndindex(self.shape): #range(self.dim): smaller.val[d] = decrease_spectrum( self.val[d], tuple(np.array(np.divide(np.add(self.N, 1), 2), dtype=np.int))) # smaller.val[d] = # weights = lagrange_weights(self.N) # for index in np.ndindex(self.shape): # self.val[index] = np.einsum('...,...->...', self.val[index], weights) self.val = copy.deepcopy(smaller.val) self.N = tuple(np.array(np.divide(np.add(self.N, 1), 2), dtype=np.int)) #self.idct() return
def potential(X, small_strain=False): if X.Fourier: FX = X else: F = DFT(N=X.N, fft_form=X.fft_form) FX = F(X) freq = Grid.get_freq(X.N, X.Y, fft_form=FX.fft_form) if X.order == 1: assert (X.dim == X.shape[0]) iX = Tensor(name='potential({0})'.format(X.name[:10]), shape=(1, ), N=X.N, Fourier=True, fft_form=FX.fft_form) iX.val[0] = potential_scalar(FX.val, freq=freq, mean_index=FX.mean_index()) elif X.order == 2: assert (X.dim == X.shape[0]) assert (X.dim == X.shape[1]) iX = Tensor(name='potential({0})'.format(X.name[:10]), shape=(X.dim, ), N=X.N, Fourier=True, fft_form=FX.fft_form) if not small_strain: for ii in range(X.dim): iX.val[ii] = potential_scalar(FX.val[ii], freq=freq, mean_index=FX.mean_index()) else: assert ((X - X.transpose()).norm() < 1e-14) # symmetricity omeg = FX.zeros_like() # non-symmetric part of the gradient gomeg = Tensor(name='potential({0})'.format(X.name[:10]), shape=FX.shape + (X.dim, ), N=X.N, Fourier=True) grad_ep = grad(FX) # gradient of strain gomeg.val = np.einsum('ikj...->ijk...', grad_ep.val) - np.einsum( 'jki...->ijk...', grad_ep.val) for ij in itertools.product(list(range(X.dim)), repeat=2): omeg.val[ij] = potential_scalar(gomeg.val[ij], freq=freq, mean_index=FX.mean_index()) gradu = FX + omeg iX = potential(gradu, small_strain=False) if X.Fourier: return iX else: iF = DFT(N=X.N, inverse=True, fft_form=FX.fft_form) return iF(iX)
def matrix2tensor(M): return Tensor(name=M.name, val=M.val, order=2, multype=21, Fourier=M.Fourier, fft_form=fft_form_default)
def grad_ortho(self): if not self.Fourier: print('Tensor {} is not in Fourier space'.format(self.name)) print('Tensor {} is transformed due to gradient'.format(self.name)) self.dct_ortho() grad = Tensor(name='gradient', N=self.N, shape=[self.dim], multype='grad') for d in range(self.dim): grad.val[d] = grad_ortho_(copy.deepcopy(self.val), d) self.val = copy.deepcopy(grad.val) self.shape = (self.dim, ) return
def matvec(self, x): """ Provides the __call__ for operand recast into one-dimensional vector. This is suitable for e.g. iterative solvers when trigonometric polynomials are recast into one-dimensional numpy.arrays. Parameters ---------- x : one-dimensional numpy.array """ X = Tensor(val=self.revec(x), order=self.X_order, N=self.X_N) AX = self.__call__(X) return AX.vec()
def grad_tensor(N, Y=None, fft_form=fft_form_default): if Y is None: Y = np.ones_like(N) # scalar valued versions of gradient and divergence N = np.array(N, dtype=np.int) dim = N.size freq = Grid.get_xil(N, Y, fft_form=fft_form) N_fft=tuple(freq[i].size for i in range(dim)) hGrad = np.zeros((dim,)+ N_fft) # zero initialize for ind in itertools.product(*[list(range(n)) for n in N_fft]): for i in range(dim): hGrad[i][ind] = freq[i][ind[i]] hGrad = hGrad*2*np.pi*1j return Tensor(name='hgrad', val=hGrad, order=1, N=N, multype='grad', Fourier=True, fft_form=fft_form)
def potential(X, small_strain=False): if X.Fourier: FX=X else: F=DFT(N=X.N, fft_form=X.fft_form) FX=F(X) freq=Grid.get_freq(X.N, X.Y, fft_form=FX.fft_form) if X.order==1: assert(X.dim==X.shape[0]) iX=Tensor(name='potential({0})'.format(X.name[:10]), shape=(1,), N=X.N, Fourier=True, fft_form=FX.fft_form) iX.val[0]=potential_scalar(FX.val, freq=freq, mean_index=FX.mean_index()) elif X.order==2: assert(X.dim==X.shape[0]) assert(X.dim==X.shape[1]) iX=Tensor(name='potential({0})'.format(X.name[:10]), shape=(X.dim,), N=X.N, Fourier=True, fft_form=FX.fft_form) if not small_strain: for ii in range(X.dim): iX.val[ii]=potential_scalar(FX.val[ii], freq=freq, mean_index=FX.mean_index()) else: assert((X-X.transpose()).norm()<1e-14) # symmetricity omeg=FX.zeros_like() # non-symmetric part of the gradient gomeg=Tensor(name='potential({0})'.format(X.name[:10]), shape=FX.shape+(X.dim,), N=X.N, Fourier=True) grad_ep=grad(FX) # gradient of strain gomeg.val=np.einsum('ikj...->ijk...', grad_ep.val)-np.einsum('jki...->ijk...', grad_ep.val) for ij in itertools.product(range(X.dim), repeat=2): omeg.val[ij]=potential_scalar(gomeg.val[ij], freq=freq, mean_index=FX.mean_index()) gradu=FX+omeg iX=potential(gradu, small_strain=False) if X.Fourier: return iX else: iF=DFT(N=X.N, inverse=True, fft_form=FX.fft_form) return iF(iX)
def vector2tensor(V): return Tensor(name=V.name, val=V.val, order=1, Fourier=V.Fourier)