Example #1
0
    def test_even(self):
        print('\nChecking Tensors with even grid points...')

        for dim, n, fft_form in itertools.product([2, 3], [4, 5], fft_forms):
            msg = 'Tensors with: dim={}, n={}, fft_form={}'.format(
                dim, n, fft_form)

            N = dim * (n, )
            M = tuple(2 * np.array(N))

            u = Tensor(name='test',
                       shape=(),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()
            Fu = u.fourier(copy=True)
            FuM = Fu.project(M)
            uM = FuM.fourier()

            if n % 2 == 0:
                self.assertGreaterEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True),
                                        FuM.norm(componentwise=True),
                                        msg=msg)
                self.assertGreaterEqual(u.norm(), uM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True),
                                        uM.norm(componentwise=True),
                                        msg=msg)
            else:
                self.assertAlmostEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True),
                                       FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertAlmostEqual(u.norm(), uM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True),
                                       uM.norm(componentwise=True),
                                       msg=msg)

            self.assertAlmostEqual(0, u.mean() - FuM.mean(), msg=msg)
            self.assertAlmostEqual(u.mean(), uM.mean(), msg=msg)

            # testing that that interpolation on double grid have exactly the same values
            slc = tuple(u.order * [
                slice(None),
            ] + [slice(0, M[i], 2) for i in range(dim)])
            self.assertAlmostEqual(0,
                                   np.linalg.norm(u.val - uM.val[slc]),
                                   msg=msg)
        print('...ok')
Example #2
0
    def test_even(self):
        print('\nChecking Tensors with even grid points...')

        for dim, n, fft_form in itertools.product([2,3], [4,5], fft_forms):
            msg='Tensors with: dim={}, n={}, fft_form={}'.format(dim, n, fft_form)

            N=dim*(n,)
            M=tuple(2*np.array(N))

            u=Tensor(name='test', shape=(), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()
            Fu=u.fourier(copy=True)
            FuM=Fu.project(M)
            uM=FuM.fourier()

            if n%2 == 0:
                self.assertGreaterEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True), FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertGreaterEqual(u.norm(), uM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True), uM.norm(componentwise=True),
                                        msg=msg)
            else:
                self.assertAlmostEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True), FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertAlmostEqual(u.norm(), uM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True), uM.norm(componentwise=True),
                                        msg=msg)

            self.assertAlmostEqual(0, u.mean()-FuM.mean(), msg=msg)
            self.assertAlmostEqual(u.mean(), uM.mean(), msg=msg)

            # testing that that interpolation on double grid have exactly the same values
            slc=tuple(u.order*[slice(None),]+[slice(0,M[i],2) for i in range(dim)])
            self.assertAlmostEqual(0, np.linalg.norm(u.val-uM.val[slc]), msg=msg)
        print('...ok')
Example #3
0
    def test_operators(self):
        print('\nChecking operators...')
        for dim, fft_form in itertools.product([2, 3], fft_forms):
            N = 5 * np.ones(dim, dtype=np.int)
            F = DFT(N=N, inverse=False, fft_form=fft_form)
            iF = DFT(N=N, inverse=True, fft_form=fft_form)

            # Fourier transform
            prt.disable()
            print(F)  # checking representation
            prt.enable()

            u = Tensor(name='u',
                       shape=(),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form).randomize()
            Fu = F(u)
            u2 = iF(Fu)
            self.assertAlmostEqual(0, (u == u2)[1],
                                   delta=1e-13,
                                   msg='Fourier transform')

            fft_formsC = copy(fft_forms)
            fft_formsC.remove(fft_form)
            for fft_formc in fft_formsC:
                FuC = Fu.set_fft_form(fft_formc, copy=True)
                Fu2 = FuC.set_fft_form(fft_form, copy=True)
                msg = 'Tensor.set_fft_form()'
                self.assertAlmostEqual(0,
                                       Fu.norm() - FuC.norm(),
                                       delta=1e-13,
                                       msg=msg)
                self.assertAlmostEqual(0,
                                       norm(Fu.mean() - FuC.mean()),
                                       delta=1e-13,
                                       msg=msg)
                self.assertAlmostEqual(0, (Fu == Fu2)[1], delta=1e-13, msg=msg)

            # scalar problem
            u = Tensor(name='u',
                       shape=(1, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form).randomize()
            u.val -= np.mean(u.val)
            Fu = F(u)
            Fu2 = potential(grad(Fu))
            self.assertAlmostEqual(0, (Fu == Fu2)[1],
                                   delta=1e-13,
                                   msg='scalar problem, Fourier=True')

            u2 = potential(grad(u))
            self.assertAlmostEqual(0, (u == u2)[1],
                                   delta=1e-13,
                                   msg='scalar problem, Fourier=False')

            hG, hD = grad_div_tensor(N, fft_form=fft_form)
            self.assertAlmostEqual(0, (hD(hG(Fu)) == div(grad(Fu)))[1],
                                   delta=1e-13,
                                   msg='scalar problem, Fourier=True')

            # vectorial problem
            u = Tensor(name='u',
                       shape=(dim, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()
            u.add_mean(-u.mean())

            Fu = F(u)
            Fu2 = potential(grad(Fu))
            self.assertAlmostEqual(0, (Fu == Fu2)[1],
                                   delta=1e-13,
                                   msg='vectorial problem, Fourier=True')

            u2 = potential(grad(u))
            self.assertAlmostEqual(0, (u == u2)[1],
                                   delta=1e-13,
                                   msg='vectorial problem, Fourier=False')

            # 'vectorial problem - symetric gradient
            Fu2 = potential(symgrad(Fu), small_strain=True)
            self.assertAlmostEqual(0, (Fu == Fu2)[1],
                                   delta=1e-13,
                                   msg='vectorial - sym, Fourier=True')

            u2 = potential(symgrad(u), small_strain=True)
            self.assertAlmostEqual(0, (u == u2)[1],
                                   delta=1e-13,
                                   msg='vectorial - sym, Fourier=False')

            # matrix version of DFT
            u = Tensor(name='u', shape=(1, ), N=N, Fourier=False,
                       fft_form='c').randomize()
            F = DFT(N=N, inverse=False, fft_form='c')
            Fu = F(u)
            dft = F.matrix(shape=u.shape)
            Fu2 = dft.dot(u.val.ravel())
            self.assertAlmostEqual(0, norm(Fu.val.ravel() - Fu2), delta=1e-13)

        print('...ok')
Example #4
0
    def test_compatibility(self):
        print('\nChecking compatibility...')
        for dim, fft_form in itertools.product([3], fft_forms):
            N = 5 * np.ones(dim, dtype=np.int)
            F = DFT(inverse=False, N=N, fft_form=fft_form)
            iF = DFT(inverse=True, N=N, fft_form=fft_form)

            # scalar problem
            _, G1l, G2l = scalar(N, Y=np.ones(dim), fft_form=fft_form)
            P1 = Operator(name='P1', mat=[[iF, G1l, F]])
            P2 = Operator(name='P2', mat=[[iF, G2l, F]])
            u = Tensor(name='u',
                       shape=(1, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()

            grad_u = grad(u)
            self.assertAlmostEqual(0, (P1(grad_u) - grad_u).norm(),
                                   delta=1e-13)
            self.assertAlmostEqual(0, P2(grad_u).norm(), delta=1e-13)

            e = P1(
                Tensor(name='u',
                       shape=(dim, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form).randomize())
            e2 = grad(potential(e))
            self.assertAlmostEqual(0, (e - e2).norm(), delta=1e-13)

            # vectorial problem
            hG = elasticity_large_deformation(N=N,
                                              Y=np.ones(dim),
                                              fft_form=fft_form)
            P1 = Operator(name='P', mat=[[iF, hG, F]])
            u = Tensor(name='u',
                       shape=(dim, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()
            grad_u = grad(u)
            val = (P1(grad_u) - grad_u).norm()
            self.assertAlmostEqual(0, val, delta=1e-13)

            e = Tensor(name='F',
                       shape=(dim, dim),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            e = P1(e.randomize())
            e2 = grad(potential(e))
            self.assertAlmostEqual(0, (e - e2).norm(), delta=1e-13)

            # transpose
            P1TT = P1.transpose().transpose()
            self.assertTrue(P1(grad_u) == P1TT(grad_u))

            self.assertTrue(hG == (hG.transpose_left().transpose_left()))
            self.assertTrue(hG == (hG.transpose_right().transpose_right()))

            # vectorial problem - symetric gradient
            hG = elasticity_small_strain(N=N,
                                         Y=np.ones(dim),
                                         fft_form=fft_form)
            P1 = Operator(name='P', mat=[[iF, hG, F]])
            u = Tensor(name='u',
                       shape=(dim, ),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()
            grad_u = symgrad(u)
            val = (P1(grad_u) - grad_u).norm()
            self.assertAlmostEqual(0, val, delta=1e-13)

            e = Tensor(name='strain',
                       shape=(dim, dim),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            e = P1(e.randomize())
            e2 = symgrad(potential(e, small_strain=True))
            self.assertAlmostEqual(0, (e - e2).norm(), delta=1e-13)

            # means
            Fu = F(u)
            E = np.random.random(u.shape)
            u.set_mean(E)
            self.assertAlmostEqual(0, norm(u.mean() - E), delta=1e-13)
            Fu.set_mean(E)
            self.assertAlmostEqual(0, norm(Fu.mean() - E), delta=1e-13)

            # __repr__
            prt.disable()
            print(P1)
            print(u)
            prt.enable()
            self.assertAlmostEqual(0, (P1 == P1.transpose()), delta=1e-13)
        print('...ok')
Example #5
0
= (np.sum(xN.val*xN.val)/np.prod(xN.N))**0.5 = """)
print(xN.norm())
print("""FxN.norm() = np.linalg.norm(FxN.val) =
= np.sum(FxN.val*np.conj(FxN.val)).real**0.5 =""")
print(FxN.norm())

print("""
The trigonometric polynomials can be also multiplied. The standard
multiplication with '*' operations corresponds to scalar product
leading to a square of norm, i.e.
FxN.norm() = xN.norm() = (xN*xN)**0.5 = (FxN*FxN)**0.5 =""")
print((xN*xN)**0.5)
print((FxN*FxN)**0.5)


print("""
The mean value of trigonometric polynomial is calculated independently for
each component of vector-field of trigonometric polynomial. In the real space,
it can be calculated as a mean of trigonometric polynomial at grid points,
while in Fourier space, it corresponds to zero frequency placed in the
center of grid, i.e.
xN.mean()[0] = xN[0].mean() = xN.val[0].mean() = FxN[0, 2, 2].real =""")
print(xN.mean()[0])
print(xN[0].mean())
print(xN.val[0].mean())
print(FxN[0, 2, 2].real)


print("""========================
Finally, we will plot the fundamental trigonometric polynomial, which
satisfies dirac-delta property at grid points and which
Example #6
0
    def test_operators(self):
        print('\nChecking operators...')
        for dim, fft_form in itertools.product([2, 3], fft_forms):
            N=5*np.ones(dim, dtype=np.int)
            F=DFT(N=N, inverse=False, fft_form=fft_form)
            iF=DFT(N=N, inverse=True, fft_form=fft_form)

            # Fourier transform
            prt.disable()
            print(F) # checking representation
            prt.enable()

            u=Tensor(name='u', shape=(), N=N, Fourier=False,
                       fft_form=fft_form).randomize()
            Fu=F(u)
            u2=iF(Fu)
            self.assertAlmostEqual(0, (u==u2)[1], delta=1e-13, msg='Fourier transform')

            fft_formsC=copy(fft_forms)
            fft_formsC.remove(fft_form)
            for fft_formc in fft_formsC:
                FuC=Fu.set_fft_form(fft_formc, copy=True)
                Fu2=FuC.set_fft_form(fft_form, copy=True)
                msg='Tensor.set_fft_form()'
                self.assertAlmostEqual(0, Fu.norm()-FuC.norm(), delta=1e-13, msg=msg)
                self.assertAlmostEqual(0, norm(Fu.mean()-FuC.mean()), delta=1e-13, msg=msg)
                self.assertAlmostEqual(0, (Fu==Fu2)[1], delta=1e-13, msg=msg)

            # scalar problem
            u=Tensor(name='u', shape=(1,), N=N, Fourier=False,
                       fft_form=fft_form).randomize()
            u.val-=np.mean(u.val)
            Fu=F(u)
            Fu2=potential(grad(Fu))
            self.assertAlmostEqual(0, (Fu==Fu2)[1], delta=1e-13,
                                   msg='scalar problem, Fourier=True')

            u2=potential(grad(u))
            self.assertAlmostEqual(0, (u==u2)[1], delta=1e-13,
                                   msg='scalar problem, Fourier=False')

            hG, hD=grad_div_tensor(N, fft_form=fft_form)
            self.assertAlmostEqual(0, (hD(hG(Fu))==div(grad(Fu)))[1], delta=1e-13,
                                   msg='scalar problem, Fourier=True')

            # vectorial problem
            u=Tensor(name='u', shape=(dim,), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()
            u.add_mean(-u.mean())

            Fu=F(u)
            Fu2=potential(grad(Fu))
            self.assertAlmostEqual(0, (Fu==Fu2)[1], delta=1e-13,
                                   msg='vectorial problem, Fourier=True')

            u2=potential(grad(u))
            self.assertAlmostEqual(0, (u==u2)[1], delta=1e-13,
                                   msg='vectorial problem, Fourier=False')

            # 'vectorial problem - symetric gradient
            Fu2=potential(symgrad(Fu), small_strain=True)
            self.assertAlmostEqual(0, (Fu==Fu2)[1], delta=1e-13,
                                   msg='vectorial - sym, Fourier=True')

            u2=potential(symgrad(u), small_strain=True)
            self.assertAlmostEqual(0, (u==u2)[1], delta=1e-13,
                                   msg='vectorial - sym, Fourier=False')

            # matrix version of DFT
            u=Tensor(name='u', shape=(1,), N=N, Fourier=False,
                       fft_form='c').randomize()
            F=DFT(N=N, inverse=False, fft_form='c')
            Fu=F(u)
            dft=F.matrix(shape=u.shape)
            Fu2=dft.dot(u.val.ravel())
            self.assertAlmostEqual(0, norm(Fu.val.ravel()-Fu2), delta=1e-13)

        print('...ok')
Example #7
0
    def test_compatibility(self):
        print('\nChecking compatibility...')
        for dim, fft_form in itertools.product([3], fft_forms):
            N=5*np.ones(dim, dtype=np.int)
            F=DFT(inverse=False, N=N, fft_form=fft_form)
            iF=DFT(inverse=True, N=N, fft_form=fft_form)

            # scalar problem
            _, G1l, G2l=scalar(N, Y=np.ones(dim), fft_form=fft_form)
            P1=Operator(name='P1', mat=[[iF, G1l, F]])
            P2=Operator(name='P2', mat=[[iF, G2l, F]])
            u=Tensor(name='u', shape=(1,), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()

            grad_u=grad(u)
            self.assertAlmostEqual(0, (P1(grad_u)-grad_u).norm(), delta=1e-13)
            self.assertAlmostEqual(0, P2(grad_u).norm(), delta=1e-13)

            e=P1(Tensor(name='u', shape=(dim,), N=N,
                          Fourier=False, fft_form=fft_form).randomize())
            e2=grad(potential(e))
            self.assertAlmostEqual(0, (e-e2).norm(), delta=1e-13)

            # vectorial problem
            hG=elasticity_large_deformation(N=N, Y=np.ones(dim), fft_form=fft_form)
            P1=Operator(name='P', mat=[[iF, hG, F]])
            u=Tensor(name='u', shape=(dim,), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()
            grad_u=grad(u)
            val=(P1(grad_u)-grad_u).norm()
            self.assertAlmostEqual(0, val, delta=1e-13)

            e=Tensor(name='F', shape=(dim, dim), N=N, Fourier=False, fft_form=fft_form)
            e=P1(e.randomize())
            e2=grad(potential(e))
            self.assertAlmostEqual(0, (e-e2).norm(), delta=1e-13)

            # transpose
            P1TT=P1.transpose().transpose()
            self.assertTrue(P1(grad_u)==P1TT(grad_u))

            self.assertTrue(hG==(hG.transpose_left().transpose_left()))
            self.assertTrue(hG==(hG.transpose_right().transpose_right()))

            # vectorial problem - symetric gradient
            hG=elasticity_small_strain(N=N, Y=np.ones(dim), fft_form=fft_form)
            P1=Operator(name='P', mat=[[iF, hG, F]])
            u=Tensor(name='u', shape=(dim,), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()
            grad_u=symgrad(u)
            val=(P1(grad_u)-grad_u).norm()
            self.assertAlmostEqual(0, val, delta=1e-13)

            e=Tensor(name='strain', shape=(dim, dim), N=N,
                     Fourier=False, fft_form=fft_form)
            e=P1(e.randomize())
            e2=symgrad(potential(e, small_strain=True))
            self.assertAlmostEqual(0, (e-e2).norm(), delta=1e-13)

            # means
            Fu=F(u)
            E=np.random.random(u.shape)
            u.set_mean(E)
            self.assertAlmostEqual(0, norm(u.mean()-E), delta=1e-13)
            Fu.set_mean(E)
            self.assertAlmostEqual(0, norm(Fu.mean()-E), delta=1e-13)

            # __repr__
            prt.disable()
            print(P1)
            print(u)
            prt.enable()
            self.assertAlmostEqual(0, (P1==P1.transpose()), delta=1e-13)
        print('...ok')
Example #8
0
xN.norm() = np.linalg.norm(xN.val)/np.prod(xN.N)**0.5 =
= (np.sum(xN.val*xN.val)/np.prod(xN.N))**0.5 = """)
print(xN.norm())
print("""FxN.norm() = np.linalg.norm(FxN.val) =
= np.sum(FxN.val*np.conj(FxN.val)).real**0.5 =""")
print(FxN.norm())

print("""
The trigonometric polynomials can be also multiplied. The standard
multiplication with '*' operations corresponds to scalar product
leading to a square of norm, i.e.
FxN.norm() = xN.norm() = (xN*xN)**0.5 = (FxN*FxN)**0.5 =""")
print((xN * xN)**0.5)
print((FxN * FxN)**0.5)

print("""
The mean value of trigonometric polynomial is calculated independently for
each component of vector-field of trigonometric polynomial. In the real space,
it can be calculated as a mean of trigonometric polynomial at grid points,
while in Fourier space, it corresponds to zero frequency placed in the
center of grid, i.e.
xN.mean()[0] = xN[0].mean() = xN.val[0].mean() = FxN[0, 2, 2].real =""")
print(xN.mean()[0])
print(xN[0].mean())
print(xN.val[0].mean())
print(FxN[0, 2, 2].real)

print("""========================
Finally, we will plot the fundamental trigonometric polynomial, which
satisfies dirac-delta property at grid points and which
plays a major way in a theory of FFT-based homogenization.