def test_Sigma_dust_sync_betas_temp(self): NSIDE = 8 MODEL = 'd0s0' INSTRUMENT = 'LiteBIRD' SIGNAL_TO_NOISE = 10000 UNITS = 'uK_CMB' sky = get_sky(NSIDE, MODEL) instrument = get_instrument(INSTRUMENT) components = [ cm.Dust(150., temp=20., units=UNITS), cm.Synchrotron(150., units=UNITS) ] ref = [] for component in components: ref += component.defaults ref = np.array(ref) freq_maps = get_observation(instrument, sky, unit=UNITS) noise_maps = get_noise_realization(NSIDE, instrument, unit=UNITS) signal = freq_maps[:, 0, 0] # Same signal for all the pixels noise = noise_maps[:, 0] signal_ver = signal / np.dot(signal, signal)**0.5 noise_std = np.std([np.dot(n, signal_ver) for n in noise.T]) maps = signal_ver * noise_std * SIGNAL_TO_NOISE maps = maps[:, np.newaxis] + noise if not hasattr(instrument, 'depth_i'): instrument['depth_i'] = instrument.depth_p / np.sqrt(2) res = basic_comp_sep(components, instrument, maps, nside=NSIDE) diff = (res.x.T - ref) postS = np.mean(diff[..., None] * diff[..., None, :], axis=0) S = res.Sigma.T[0] aac(postS, S, rtol=1. / NSIDE)
def test_Sigma_synchrotron(self): NSIDE = 8 MODEL = 's0' INSTRUMENT = 'LiteBIRD' SIGNAL_TO_NOISE = 20 sky = get_sky(NSIDE, MODEL) instrument = get_instrument(INSTRUMENT) components = [cm.Synchrotron(100.)] ref = [] for component in components: ref += component.defaults freq_maps = get_observation(instrument, sky) noise_maps = get_noise_realization(NSIDE, instrument) signal = freq_maps[:, 0, 0] noise = np.std(noise_maps[:, 0], axis=-1) maps = signal / np.dot(signal, noise) * SIGNAL_TO_NOISE maps = maps[:, np.newaxis] + noise_maps[:, 0] if not hasattr(instrument, 'depth_i'): instrument['depth_i'] = instrument.depth_p / np.sqrt(2) res = basic_comp_sep(components, instrument, maps, nside=hp.get_nside(maps)) white = (res.x[0] - ref[0]) / res.Sigma[0, 0]**0.5 _, p = kstest(white, 'norm') assert p > 0.01, f'KS probability is {p}'
def test_Sigma_dust_one_parameter(self): NSIDE = 8 MODEL = 'd0' INSTRUMENT = 'LiteBIRD' SIGNAL_TO_NOISE = 10 sky = get_sky(NSIDE, MODEL) instrument = get_instrument(INSTRUMENT) components = [cm.Dust(100., temp=20.)] ref = [] for component in components: ref += component.defaults freq_maps = get_observation(instrument, sky) noise_maps = get_noise_realization(NSIDE, instrument) signal = freq_maps[:, 0, 0] noise = noise_maps[:, 0] signal_ver = signal / np.dot(signal, signal)**0.5 noise_std = np.std([np.dot(n, signal_ver) for n in noise.T]) maps = signal_ver * noise_std * SIGNAL_TO_NOISE maps = maps[:, np.newaxis] + noise if not hasattr(instrument, 'depth_i'): instrument['depth_i'] = instrument.depth_p / np.sqrt(2) res = basic_comp_sep(components, instrument, maps, nside=hp.get_nside(maps)) white = (res.x[0] - ref[0]) / res.Sigma[0, 0]**0.5 _, p = kstest(white, 'norm') assert p > 0.01
def setUp(self): NSIDE = 16 MODEL = 'c1d0s0f1' INSTRUMENT = 'LiteBIRD' X0_FACTOR = 0.99 sky = get_sky(NSIDE, MODEL) self.instrument = get_instrument(INSTRUMENT) self.freq_maps = get_observation(self.instrument, sky) self.components = [cm.CMB(), cm.Dust(200.), cm.Synchrotron(100.)] freefree = cm.PowerLaw(100.) freefree.defaults = [-2.14] # Otherwise it is the same as Synchrotron self.components.append(freefree) self.input = [] for component in self.components: self.input += component.defaults component.defaults = [d * X0_FACTOR for d in component.defaults]
def test_dependence_on_nu0_CMB(self): NSIDE = 4 MODEL = 'c1s0' INSTRUMENT = 'LiteBIRD' sky = get_sky(NSIDE, MODEL) instrument = get_instrument(INSTRUMENT) components100 = [cm.CMB(), cm.Synchrotron(100.)] components10 = [cm.CMB(), cm.Synchrotron(10.)] freq_maps = get_observation(instrument, sky) res10 = basic_comp_sep(components10, instrument, freq_maps) res100 = basic_comp_sep(components100, instrument, freq_maps) aac(res100.Sigma, res10.Sigma) aac(res100.x, res10.x) aac(res100.s[0], res10.s[0], atol=1e-7) factor = _cmb2rj(10.) * _rj2cmb(100.) aac(res100.s[1], res10.s[1] * 10**res10.x[0] * factor)
def test_dependence_on_nu0_RJ(self): NSIDE = 8 MODEL = 'c1s0' INSTRUMENT = 'LiteBIRD' sky = get_sky(NSIDE, MODEL) instrument = get_instrument(INSTRUMENT) components100 = [ cm.CMB(units='K_RJ'), cm.Synchrotron(100., units='K_RJ') ] components10 = [ cm.CMB(units='K_RJ'), cm.Synchrotron(10., units='K_RJ') ] freq_maps = get_observation(instrument, sky, unit='K_RJ') res100 = basic_comp_sep(components100, instrument, freq_maps) res10 = basic_comp_sep(components10, instrument, freq_maps) aac(res100.Sigma, res10.Sigma) aac(res100.x, res10.x) aac(res100.s[0], res10.s[0]) aac(res100.s[1], res10.s[1] * 10**res10.x[0])
def estimate_Stat_and_Sys_residuals( idpatches, galactic_binmask, parameter_string, randomseed=1234567, version="v28", instrument_conf="LiteBIRD", ): nside = hp.get_nside(galactic_binmask) v = { "v27": np.array( [ 39.76, 25.76, 20.69, 12.72, 10.39, 8.95, 6.43, 4.3, 4.43, 4.86, 5.44, 9.72, 12.91, 19.07, 43.53, ] ), "v28": np.array( [ 59.29, 32.78, 25.76, 15.91, 13.10, 11.25, 7.74, 5.37, 5.65, 5.81, 6.48, 15.16, 17.98, 24.99, 49.90, ] ), } sens_I_LB = np.array( [ 25.60283688, 13.90070922, 14.32624113, 8.0141844, 7.30496454, 5.95744681, 4.96453901, 4.11347518, 3.33333333, 4.96453901, 4.11347518, 5.67375887, 6.45390071, 8.08510638, 13.90070922, ] ) skyconst = get_sky(nside, "d0s0") instrument = get_instrument(instrument_conf) instrument.depth_i = sens_I_LB instrument.depth_p = v["v28"] patches = np.zeros_like(galactic_binmask, dtype=np.int_) patches[galactic_binmask] = np.int_(idpatches) + 1 skyvar, patchlist = fitting_parameters(parameter_string, nside, patches) np.random.seed(seed=randomseed) signalvar = get_observation(instrument, skyvar, noise=False) signoisemaps = get_observation(instrument, skyconst, noise=True) signalvar[:, :, ~galactic_binmask] = hp.UNSEEN signoisemaps[:, :, ~galactic_binmask] = hp.UNSEEN components = [CMB(), Synchrotron(20), Dust(353)] sysresult = adaptive_comp_sep(components, instrument, signalvar[:, 1:], patchlist) statresult = adaptive_comp_sep( components, instrument, signoisemaps[:, 1:], patchlist ) msys = np.zeros_like(signalvar[0]) mstat = np.zeros_like(signoisemaps[0]) # Mask eventually unconstrained pixels for i in range(2): nan = np.ma.masked_invalid(sysresult.s[0, i]).mask msys[i + 1, :] = sysresult.s[0, i] msys[i + 1, nan] = hp.UNSEEN nan = np.ma.masked_invalid(statresult.s[0, i]).mask mstat[i + 1, :] = statresult.s[0, i] mstat[i + 1, nan] = hp.UNSEEN return msys, mstat