Example #1
0
    def test_io(self):
        np.random.seed(123456789)
        test_dir = test_subdir_create("assign_test_io")
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Compute the targets available to each fiber for each tile.
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = {}

        # First pass assignment
        asgn = Assignment(tgs, tgsavail, favail, stucksky)
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Write out, merge, read back in and verify

        write_assignment_ascii(tiles,
                               asgn,
                               out_dir=test_dir,
                               out_prefix="test_io_ascii_")

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="basic_",
                              all_targets=False)

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="full_",
                              all_targets=True)

        plotpetals = [0]
        # plotpetals = None

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="basic_",
                   plot_dir=test_dir,
                   plot_prefix="basic_",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="full_",
                   plot_dir=test_dir,
                   plot_prefix="full_",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        target_files = [input_mtl, input_sky, input_std]
        tile_ids = list(tiles.id)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="basic_",
                      out_dir=test_dir,
                      out_prefix="basic_tile-",
                      copy_fba=False)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="full_",
                      out_dir=test_dir,
                      out_prefix="full_tile-",
                      copy_fba=False)

        # Here we test reading with the standard reading function

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((tid, infile))

            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((tid, infile))
            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

        # Now read the files directly with fitsio and verify against the input
        # target data.

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="basic_tile-",
                   plot_dir=test_dir,
                   plot_prefix="basic_tile-",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="full_tile-",
                   plot_dir=test_dir,
                   plot_prefix="full_tile-",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)
        return
Example #2
0
    def test_fieldrot(self):
        test_dir = test_subdir_create("assign_test_fieldrot")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        # Simulate the tiles
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)

        # petal mapping
        rotator = petal_rotation(1, reverse=False)

        rots = [0, 36]

        tile_ids = None

        for rt in rots:
            odir = "theta_{:02d}".format(rt)

            tgs = Targets()
            load_target_file(tgs, input_mtl)
            load_target_file(tgs, input_std)
            load_target_file(tgs, input_sky)
            load_target_file(tgs, input_suppsky)

            # Create a hierarchical triangle mesh lookup of the targets
            # positions
            tree = TargetTree(tgs, 0.01)

            # Manually override the field rotation
            tiles = load_tiles(tiles_file=tfile, obstheta=float(rt))
            if tile_ids is None:
                tile_ids = list(tiles.id)

            # Simulate a fake focalplane
            fp, exclude, state = sim_focalplane(rundate=test_assign_date,
                                                fakepos=True)

            # Load the focalplane
            hw = load_hardware(focalplane=(fp, exclude, state))

            # Compute the targets available to each fiber for each tile.
            tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

            # Compute the fibers on all tiles available for each target
            favail = LocationsAvailable(tgsavail)

            # Pass empty map of STUCK positioners that land on good sky
            stucksky = {}

            # Create assignment object
            asgn = Assignment(tgs, tgsavail, favail, stucksky)

            # First-pass assignment of science targets
            asgn.assign_unused(TARGET_TYPE_SCIENCE)

            out = os.path.join(test_dir, odir)

            write_assignment_fits(tiles, asgn, out_dir=out, all_targets=True)

            ppet = 6
            if odir == "theta_36":
                ppet = rotator[6]
            plot_tiles(hw,
                       tiles,
                       result_dir=out,
                       plot_dir=out,
                       real_shapes=True,
                       petals=[ppet],
                       serial=True)

            # Explicitly free everything
            del asgn
            del favail
            del tgsavail
            del hw
            del tiles
            del tree
            del tgs

        # For each tile, compare the assignment output and verify that they
        # agree with a one-petal rotation.

        # NOTE:  The comparison below will NOT pass, since we are still
        # Sorting by highest priority available target and then (in case
        # of a tie) by fiber ID.  See line 333 of assign.cpp.  Re-enable this
        # test after that is changed to sort by location in case of a tie.

        # for tl in tile_ids:
        #     orig_path = os.path.join(
        #         test_dir, "theta_00", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     orig_header, orig_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, orig_path))
        #     rot_path = os.path.join(
        #         test_dir, "theta_36", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     rot_header, rot_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, rot_path))
        #     comppath = os.path.join(
        #         test_dir, "comp_00-36_{:06d}.txt".format(tl)
        #     )
        #     with open(comppath, "w") as fc:
        #         for dev, petal, tg in zip(
        #                 orig_data["DEVICE_LOC"], orig_data["PETAL_LOC"],
        #                 orig_data["TARGETID"]
        #         ):
        #             for newdev, newpetal, newtg in zip(
        #                     rot_data["DEVICE_LOC"], rot_data["PETAL_LOC"],
        #                     rot_data["TARGETID"]
        #             ):
        #                 rpet = rotator[newpetal]
        #                 if (newdev == dev) and (rpet == petal):
        #                     fc.write(
        #                         "{}, {} = {} : {}, {} = {}\n"
        #                         .format(petal, dev, tg, rpet, newdev, newtg)
        #                     )
        #                     # self.assertEqual(newtg, tg)

        return
    def test_full(self):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        nscience = sim_targets(input_mtl, TARGET_TYPE_SCIENCE, 0)
        nstd = sim_targets(input_std, TARGET_TYPE_STANDARD, nscience)
        nsky = sim_targets(input_sky, TARGET_TYPE_SKY, (nscience + nstd))

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fstatus = os.path.join(test_dir, "fiberstatus.ecsv")
        sim_status(fstatus)
        hw = load_hardware(status_file=fstatus)
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = FibersAvailable(tgsavail)

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute science targets
        asgn.redistribute_science()

        # Assign standards, 10 per petal
        asgn.assign_unused(TARGET_TYPE_STANDARD, 10)
        asgn.assign_force(TARGET_TYPE_STANDARD, 10)

        # Assign sky to unused fibers, up to 40 per petal
        asgn.assign_unused(TARGET_TYPE_SKY, 40)
        asgn.assign_force(TARGET_TYPE_SKY, 40)

        # If there are any unassigned fibers, try to place them somewhere.
        asgn.assign_unused(TARGET_TYPE_SCIENCE)
        asgn.assign_unused(TARGET_TYPE_SKY)

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   plot_dir=test_dir,
                   petals=[0],
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertEqual(4495, props["assign_science"])
            self.assertEqual(100, props["assign_std"])
            self.assertEqual(400, props["assign_sky"])

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)

        return
Example #4
0
    def test_full(self, do_stucksky=False):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        if do_stucksky:
            sim_stuck_sky(test_dir, hw, tiles)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = None
        if do_stucksky:
            stucksky = stuck_on_sky(hw, tiles)
        if stucksky is None:
            # (the pybind code doesn't like None when a dict is expected...)
            stucksky = {}

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail, stucksky)

        run(asgn)

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              all_targets=True,
                              stucksky=stucksky)

        plotpetals = [0]
        #plotpetals = None
        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   plot_dir=test_dir,
                   result_prefix="fba-",
                   real_shapes=True,
                   petals=plotpetals,
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertTrue(props["assign_science"] >= 4485)
            self.assertEqual(100, props["assign_std"])
            if do_stucksky:
                # We get 3 stuck positioners landing on good sky!
                self.assertTrue(
                    (props["assign_sky"] + props["assign_suppsky"]) >= 397)
            else:
                self.assertTrue(
                    (props["assign_sky"] + props["assign_suppsky"]) >= 400)

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)
        return
Example #5
0
    def test_full(self):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute science targets
        asgn.redistribute_science()

        # Assign standards, 10 per petal
        asgn.assign_unused(TARGET_TYPE_STANDARD, 10)
        asgn.assign_force(TARGET_TYPE_STANDARD, 10)

        # Assign sky to unused fibers, up to 40 per petal
        asgn.assign_unused(TARGET_TYPE_SKY, 40)
        asgn.assign_force(TARGET_TYPE_SKY, 40)

        # Use supplemental sky to meet our requirements
        asgn.assign_unused(TARGET_TYPE_SUPPSKY, 40)
        asgn.assign_force(TARGET_TYPE_SUPPSKY, 40)

        # If there are any unassigned fibers, try to place them somewhere.
        asgn.assign_unused(TARGET_TYPE_SCIENCE)
        asgn.assign_unused(TARGET_TYPE_SKY)
        asgn.assign_unused(TARGET_TYPE_SUPPSKY)

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        plotpetals = [0]
        #plotpetals = None
        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   plot_dir=test_dir,
                   result_prefix="fba-",
                   real_shapes=True,
                   petals=plotpetals,
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertTrue(props["assign_science"] >= 4485)
            self.assertEqual(100, props["assign_std"])
            self.assertTrue(
                (props["assign_sky"] + props["assign_suppsky"]) >= 400)

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)
        return