def trackmate(self):
        calibration = self.imp.getCalibration()
        model = Model()
        model.setLogger(Logger.IJ_LOGGER)
        settings = Settings()
        settings.setFrom(self.imp)
        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS': calibration.getX(self.trackmateSize),
            'TARGET_CHANNEL': 1,
            'THRESHOLD': self.trackmateThreashold,
            'DO_MEDIAN_FILTERING': True,
        }

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 0.01, True)
        settings.addSpotFilter(filter1)
        settings.addSpotAnalyzerFactory(SpotIntensityMultiCAnalyzerFactory())

        settings.initialSpotFilterValue = 1

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

        trackmate = TrackMate(model, settings)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            print("NOT OK")

        ok = trackmate.process()
        if not ok:
            print("NOT OK")

        #----------------
        # Display results
        #----------------

        #selectionModel = SelectionModel(model)
        #displayer =  HyperStackDisplayer(model, selectionModel, self.imp)
        #displayer.render()
        #displayer.refresh()

        # Echo results with the logger we set at start:
        spots = model.getSpots()
        return spots.iterable(True)
def detection(imp, c):
    cal = imp.getCalibration()
    model = Model()
    settings = Settings()
    settings.setFrom(imp)
    # Configure detector - Manually determined as best
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 2.0,
        'TARGET_CHANNEL': c,
        'THRESHOLD': 20.0,
        'DO_MEDIAN_FILTERING': False,
    }
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    trackmate = TrackMate(model, settings)
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    try:
        ok = trackmate.process()
    except:
        IJ.log("Nothing detected")
        IJ.selectWindow('test')
        IJ.run('Close')
    else:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
        # Get spots information
        spots = model.getSpots()
        spotIt = spots.iterator(0, False)
        # Loop through spots and save into files
        # Fetch spot features directly from spot
        sid = []
        x = []
        y = []
        q = []
        r = []
        spotID = 0
        for spot in spotIt:
            spotID = spotID + 1
            sid.append(spotID)
            x.append(spot.getFeature('POSITION_X'))
            y.append(spot.getFeature('POSITION_Y'))
            q.append(spot.getFeature('QUALITY'))
            r.append(spot.getFeature('RADIUS'))
        data = zip(sid, x, y, q, r)
        return data
Example #3
0
def track():
    imp = IJ.getImage()
    nChannels = imp.getNChannels()  # Get the number of channels 
    orgtitle = imp.getTitle()
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Enhance Contrast...", "saturated=0.3")
    IJ.run("Multiply...", "value=10 stack")
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Set Scale...", "distance=0")
    
    channels = ChannelSplitter.split(imp)
    imp_GFP = channels[0]
    imp_RFP = channels[1]
    IJ.selectWindow(orgtitle)
    IJ.run("Close")
    ic = ImageCalculator()
    imp_merge = ic.run("Add create stack", imp_GFP, imp_RFP)
    imp_merge.setTitle("add_channels")
    imp_merge.show()
    imp_RFP.show()
    imp_GFP.show()
    
    imp5 = ImagePlus()
    IJ.run(imp5, "Merge Channels...", "c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    print("c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    imp5.show()
    imp5 = IJ.getImage()
    
    nChannels = imp5.getNChannels()
    # Setup settings for TrackMate
    settings = Settings()
    settings.setFrom(imp5)
    
    # Spot analyzer: we want the multi-C intensity analyzer.
    settings.addSpotAnalyzerFactory(SpotMultiChannelIntensityAnalyzerFactory())   

    # Spot detector.
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
    settings.detectorSettings['TARGET_CHANNEL'] = 1
    settings.detectorSettings['RADIUS'] = 24.0
    settings.detectorSettings['THRESHOLD'] = 0.0
    
    # Spot tracker.
    # Configure tracker - We don't want to allow merges or splits
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 1
    
    # Configure track filters
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())
    
    filter1 = FeatureFilter('TRACK_DURATION', 20, True)
    settings.addTrackFilter(filter1)
    
    # Run TrackMate and store data into Model.
    model = Model()
    trackmate = TrackMate(model, settings)
    
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
            
    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    
    selectionModel = SelectionModel(model)
    displayer =  HyperStackDisplayer(model, selectionModel, imp5)
    displayer.render()
    displayer.refresh()
    
    IJ.log('TrackMate completed successfully.')
    IJ.log('Found %d spots in %d tracks.' % (model.getSpots().getNSpots(True) , model.getTrackModel().nTracks(True)))
    
    # Print results in the console.
    headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z')
    rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
    for i in range( nChannels ):
        headerStr += (' %10s' % ( 'C' + str(i+1) ) )
        rowStr += ( ' %10.1f' )
    
    #open a file to save results
    myfile = open('/home/rickettsia/Desktop/data/Clamydial_Image_Analysis/EMS_BMECBMELVA_20X_01122019/data/'+orgtitle.split('.')[0]+'.csv', 'wb')
    wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
    wr.writerow(['Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z', 'Channel_1', 'Channel_2'])
    
    IJ.log('\n')
    IJ.log(headerStr)
    tm = model.getTrackModel()
    trackIDs = tm.trackIDs(True)
    for trackID in trackIDs:
        spots = tm.trackSpots(trackID)
    
        # Let's sort them by frame.
        ls = ArrayList(spots)
        
        for spot in ls:
            values = [spot.ID(), trackID, spot.getFeature('FRAME'), \
                spot.getFeature('POSITION_X'), spot.getFeature('POSITION_Y'), spot.getFeature('POSITION_Z')]
            for i in range(nChannels):
                values.append(spot.getFeature('MEAN_INTENSITY%02d' % (i+1)))
                
            IJ.log(rowStr % tuple(values))
            l1 = (values[0], values[1], values[2], values[3], values[4], values[5], values[7], values[8])
            wr.writerow(l1)
    
    myfile.close()
    IJ.selectWindow("Merged")
    IJ.run("Close")
    y_lc = [None]*0
    mn_int = [None]*0
    inten = [None]*0
    tr_dur = [None]*0
    tr_start = [None]*0
    tr_fin = [None]*0
    spt_tr = [None]*0
    spt_widt = [None]*0
    tr_charact = [None]*0
    x_tr = [None]*0
    y_tr = [None]*0
    spt_all_x = [None]*0
    spt_all_y = [None]*0
    tr_identifi = [None]*0
    tr_fram = [None]*0
    spt_m = model.getSpots()
    #tot_spts = spt_m.getNSpots(True)
    for id in model.getTrackModel().trackIDs(True):

        # Fetch the track feature from the feature model.
        v = fm.getTrackFeature(id, 'TRACK_MEAN_SPEED')
        med_v = fm.getTrackFeature(id, 'TRACK_MEDIAN_SPEED')
        min_v = fm.getTrackFeature(id, 'TRACK_MIN_SPEED')
        max_v = fm.getTrackFeature(id, 'TRACK_MAX_SPEED')
        std_v = fm.getTrackFeature(id, 'TRACK_STD_SPEED')
        q = fm.getTrackFeature(id, 'TRACK_MEAN_QUALITY')
        med_q = fm.getTrackFeature(id, 'TRACK_MEDIAN_QUALITY')
        min_q = fm.getTrackFeature(id, 'TRACK_MIN_QUALITY')
        max_q = fm.getTrackFeature(id, 'TRACK_MAX_QUALITY')
        std_q = fm.getTrackFeature(id, 'TRACK_STD_QUALITY')
        dura = fm.getTrackFeature(id, 'TRACK_DURATION')
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
settings.trackerSettings['MAX_FRAME_GAP'] = frameGap
settings.trackerSettings['LINKING_MAX_DISTANCE'] = linkingMax
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = closingMax

# Run TrackMate and store data into Model.
model = Model()
trackmate = TrackMate(model, settings)

if not trackmate.checkInput() or not trackmate.process():
    IJ.log('Could not execute TrackMate: ' + str(trackmate.getErrorMessage()))
else:
    IJ.log('TrackMate completed successfully.')
    IJ.log(
        'Found %d spots in %d tracks.' % (model.getSpots().getNSpots(True),
                                          model.getTrackModel().nTracks(True)))

    # Print results in the console.
    headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID',
                                                   'Frame', 'X', 'Y', 'Z')
    rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
    for i in range(nChannels):
        headerStr += (' %10s' % ('C' + str(i + 1)))
        rowStr += (' %10.1f')

    IJ.log('\n')
    IJ.log(headerStr)
    tm = model.getTrackModel()
    trackIDs = tm.trackIDs(True)
    for trackID in trackIDs:
Example #6
0
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.trackerSettings['LINKING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['MAX_FRAME_GAP'] = 3

#Running specific trackmate tasks
trackmate = TrackMate(model, settings)
trackmate.setNumThreads(1)
trackmate.execDetection()
trackmate.execInitialSpotFiltering()
trackmate.computeSpotFeatures(False)
trackmate.execSpotFiltering(False)

#get spot features
fm = model.getFeatureModel()
all_spots = model.getSpots()
quality = all_spots.collectValues('QUALITY', False)
optimalQuality = fiji.plugin.trackmate.util.TMUtils.otsuThreshold(
    quality) * subtraction

#2.
trackmate.setNumThreads(4)
model = Model()
model.setLogger(Logger.IJ_LOGGER)
settings = Settings()
settings.setFrom(imp)
stringOptimalQuality = str(optimalQuality)
model.getLogger().log(stringOptimalQuality)

#3.
# Configure detector
# Spot tracker.
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
settings.trackerSettings['MAX_FRAME_GAP']  = frameGap
settings.trackerSettings['LINKING_MAX_DISTANCE']  = linkingMax
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE']  = closingMax

# Run TrackMate and store data into Model.
model = Model()
trackmate = TrackMate(model, settings)

if not trackmate.checkInput() or not trackmate.process():
	IJ.log('Could not execute TrackMate: ' + str( trackmate.getErrorMessage() ) )
else:
	IJ.log('TrackMate completed successfully.' )
	IJ.log( 'Found %d spots in %d tracks.' % ( model.getSpots().getNSpots( True ) , model.getTrackModel().nTracks( True ) ) )

	# Print results in the console.
	headerStr = '%10s %10s %10s %10s %10s %10s' % ( 'Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z' )
	rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
	for i in range( nChannels ):
		headerStr += ( ' %10s'  % ( 'C' + str(i+1) ) )
		rowStr += ( ' %10.1f' )
	
	IJ.log('\n')
	IJ.log( headerStr)
	tm = model.getTrackModel()
	trackIDs = tm.trackIDs( True )
	for trackID in trackIDs:
		spots = tm.trackSpots( trackID )
Example #8
0
        settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 5.
        settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
        settings.trackerSettings['ALLOW_TRACK_MERGING'] = False

        #-------------------
        # Instantiate plugin
        #-------------------
        trackmate = TrackMate(model, settings)

        if not trackmate.checkInput() or not trackmate.process():
            IJ.log('Could not execute TrackMate: ' +
                   str(trackmate.getErrorMessage()))
        else:
            IJ.log('TrackMate completed successfully.')
            IJ.log('Found %d spots in %d tracks.' %
                   (model.getSpots().getNSpots(True),
                    model.getTrackModel().nTracks(True)))

        # Now open the output file & write a header with each field you need. Fields:
        # Spot_ID, which is unique for each identified object
        # Track_ID, which is unique for each 'track' - i.e. same object over time
        # Frame, which specifies the current frame
        # X-Y-Z, which are the spatial locations of the tracked object at the current frame.
        headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID',
                                                       'Frame', 'X', 'Y', 'Z')
        rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
        # Finally, we also want the mean intensity of each tracked object in each frame.
        # For this, we get an additional column for each channel in the image.
        for i in range(nChannels):
            headerStr += (' %10s' % ('C' + str(i + 1)))
            rowStr += (' %10.1f')
def processImages(cfg, wellName, wellPath, images):
    firstImage = IJ.openImage(images[0][0][0][0])
    imgWidth = firstImage.getWidth()
    imgHeight = firstImage.getHeight()

    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(
                ELMConfig.chansToSkip):
            continue
        imColorSeq = ImageStack(imgWidth, imgHeight)
        imSeq = ImageStack(imgWidth, imgHeight)
        totalHist = []
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            for t in range(0, cfg.getValue(ELMConfig.numT)):

                currIP = IJ.openImage(images[c][z][t][0])
                imColorSeq.addSlice(currIP.duplicate().getProcessor())

                currIP = ELMImageUtils.getGrayScaleImage(
                    currIP, c, chanName, cfg)

                imSeq.addSlice(currIP.getProcessor())
                imgStats = currIP.getStatistics()
                currHist = imgStats.getHistogram()
                if not totalHist:
                    for i in range(len(currHist)):
                        totalHist.append(currHist[i])
                else:
                    for i in range(len(currHist)):
                        totalHist[i] += currHist[i]

        if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue(
                ELMConfig.thresholdFromWholeRange) == True:
            threshMethod = "Otsu"  # Default works very poorly for this data
            if cfg.hasValue(ELMConfig.thresholdMethod):
                threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
            thresholder = AutoThresholder()
            computedThresh = thresholder.getThreshold(threshMethod, totalHist)
            cfg.setValue(ELMConfig.imageThreshold, computedThresh)
            print("\tComputed threshold from total hist (" + threshMethod +
                  "): " + str(computedThresh))
            print()
        else:
            print("\tUsing threshold computed on individual images!")
            print()
            computedThresh = 0

        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        imp = ImagePlus()
        imp.setStack(imSeq)
        imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        imp.setTitle(wellName + ", channel " + str(c))

        impColor = ImagePlus()
        impColor.setStack(imColorSeq)
        impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        impColor.setTitle(wellName + ", channel " + str(c) + " (Color)")

        #----------------------------
        # Create the model object now
        #----------------------------

        # Some of the parameters we configure below need to have
        # a reference to the model at creation. So we create an
        # empty model now.

        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        pa_features = [
            "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X",
            "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major",
            "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew",
            "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret",
            "AR", "Round", "Solidity"
        ]

        featureNames = {}
        featureShortNames = {}
        featureDimensions = {}
        isInt = {}
        for feature in pa_features:
            featureNames[feature] = feature
            featureShortNames[feature] = feature
            featureDimensions[feature] = Dimension.STRING
            isInt[feature] = False

        model.getFeatureModel().declareSpotFeatures(pa_features, featureNames,
                                                    featureShortNames,
                                                    featureDimensions, isInt)

        #------------------------
        # Prepare settings object
        #------------------------

        settings = Settings()
        settings.setFrom(imp)

        dbgPath = os.path.join(wellPath, 'debugImages_' + chanName)
        if not os.path.exists(dbgPath):
            os.makedirs(dbgPath)

        if cfg.hasValue(ELMConfig.thresholdMethod):
            threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
        else:
            threshMethod = "Default"

        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = ThresholdDetectorFactory()
        settings.detectorSettings = {
            'THRESHOLD': computedThresh,
            'ABOVE': True,
            'DEBUG_MODE': True,
            'DEBUG_OUTPATH': dbgPath,
            'THRESHOLD_METHOD': threshMethod
        }

        #settings.detectorFactory = LocalThresholdDetectorFactory()
        #settings.detectorSettings = {
        #    'THRESHOLD' : computedThresh,
        #    'DEBUG_MODE' : True,
        #    'DEBUG_OUTPATH' : dbgPath
        #}

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 150, True)
        settings.addSpotFilter(filter1)

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough

        # Linking
        settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0
        # in pixels

        linkFeaturePenalties = HashMap()
        linkFeaturePenalties['Area'] = 1.0
        linkFeaturePenalties['POSITION_X'] = 1.0
        linkFeaturePenalties['POSITION_Y'] = 1.0
        #linkFeaturePenalties['Circ.'] = 1.0
        #linkFeaturePenalties['Mean'] = 1.0

        settings.trackerSettings[
            TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties
        # Gap closing
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True
        settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8
        settings.trackerSettings[
            TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES));
        # Track splitting
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False
        settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES));
        # Track merging
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True
        settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES));
        # Others
        settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf")
        settings.trackerSettings[
            TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05
        settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9

        # Configure track analyzers - Later on we want to filter out tracks
        # based on their displacement, so we need to state that we want
        # track displacement to be calculated. By default, out of the GUI,
        # no features are calculated.

        # The displacement feature is provided by the TrackDurationAnalyzer.
        settings.addTrackAnalyzer(TrackDurationAnalyzer())
        settings.addTrackAnalyzer(TrackBranchingAnalyzer())
        settings.addTrackAnalyzer(TrackIndexAnalyzer())
        settings.addTrackAnalyzer(TrackLocationAnalyzer())
        settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

        # Configure track filters - We want to get rid of the two immobile spots at
        # the bottom right of the image. Track displacement must be above 10 pixels.
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)

        #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo())

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)
        trackmate.setNumThreads(1)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        print("Processing " + chanName + "...")
        ok = trackmate.process()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        #----------------
        # Display results
        #----------------
        print("Rendering...")

        # Set spot names based on track IDs
        # This allows track IDs to be displayed in the rendered video
        for tId in model.getTrackModel().trackIDs(True):
            trackSpots = model.getTrackModel().trackSpots(tId)
            for spot in trackSpots:
                spot.setName(str(tId))

        # Determine sub-tracks within a track
        # Since tracks can merge, we want to keep track of which track a spot is
        # in prior to the merge
        spotToSubTrackMap = {}
        spotIt = model.getSpots().iterator(False)
        trackModel = model.getTrackModel()
        subTrackCount = {}
        while spotIt.hasNext():
            spot = spotIt.next()
            spotEdges = trackModel.edgesOf(spot)
            # Find merge points within a track: ignore spots with fewer than 2 edges
            if (len(spotEdges) < 2):
                continue

            # We have a merge if we have multiple incoming edges
            incomingEdges = 0
            edgeIt = spotEdges.iterator()
            ancestorSpots = []
            while edgeIt.hasNext():
                edge = edgeIt.next()
                src = trackModel.getEdgeSource(edge)
                dst = trackModel.getEdgeTarget(edge)
                if dst.ID() == spot.ID():
                    ancestorSpots.append(src)
                    incomingEdges += 1
            # Ignore non-merges
            if incomingEdges < 2:
                continue

            trackId = trackModel.trackIDOf(spot)
            if trackId in subTrackCount:
                subTrackId = subTrackCount[trackId]
            else:
                subTrackId = 1
            for ancestorSpot in ancestorSpots:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap,
                                       ancestorSpot, subTrackId, trackId,
                                       False)
                subTrackId += 1
            subTrackCount[trackId] = subTrackId

        # Spots after the last merge still need to be labeled
        for tId in trackModel.trackIDs(True):
            trackSpots = trackModel.trackSpots(tId)
            spotIt = trackSpots.iterator()
            lastSpot = None
            while spotIt.hasNext():
                spot = spotIt.next()
                outgoingEdges = 0
                spotEdges = trackModel.edgesOf(spot)
                edgeIt = spotEdges.iterator()
                while edgeIt.hasNext():
                    edge = edgeIt.next()
                    src = trackModel.getEdgeSource(edge)
                    dst = trackModel.getEdgeTarget(edge)
                    if src.ID() == spot.ID():
                        outgoingEdges += 1
                if outgoingEdges == 0 and len(spotEdges) > 0:
                    lastSpot = spot

            if tId in subTrackCount:
                subTrackId = subTrackCount[tId]
            else:
                subTrackId = 1
            if not lastSpot == None:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot,
                                       subTrackId, tId, True)

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n')
        for spotId in spotToSubTrackMap:
            trackFile.write(
                str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) +
                '\n')
        trackFile.close()

        # Write Edge Set
        trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv")
        trackFile = open(trackOut, 'w')
        trackFile.write('Track Id, Spot Id, Spot Id \n')
        edgeIt = trackModel.edgeSet().iterator()
        while edgeIt.hasNext():
            edge = edgeIt.next()
            src = trackModel.getEdgeSource(edge)
            dst = trackModel.getEdgeTarget(edge)
            trackId = trackModel.trackIDOf(edge)
            srcSubTrack = spotToSubTrackMap[src.ID()][0]
            dstSubTrack = spotToSubTrackMap[dst.ID()][0]
            if not srcSubTrack == dstSubTrack:
                trackFile.write(
                    str(trackId) + ', ' + str(src.ID()) + ', ' +
                    str(dst.ID()) + '\n')
        trackFile.close()

        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, impColor)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_COLORING,
            PerTrackFeatureColorGenerator(model,
                                          TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_SPOT_COLORING,
            SpotColorGeneratorPerTrackFeature(model,
                                              TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES,
                                     True)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_MODE,
            TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2)
        displayer.render()
        displayer.refresh()

        trackmate.getSettings().imp = impColor
        coa = CaptureOverlayAction(None)
        coa.execute(trackmate)

        WindowManager.setTempCurrentImage(coa.getCapture())
        IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi"))

        imp.close()
        impColor.close()
        displayer.clear()
        displayer.getImp().hide()
        displayer.getImp().close()
        coa.getCapture().hide()
        coa.getCapture().close()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

        # The feature model, that stores edge and track features.
        fm = model.getFeatureModel()

        # Write output for tracks
        numTracks = model.getTrackModel().trackIDs(True).size()
        print "Writing track data for " + str(numTracks) + " tracks."
        trackDat = {}
        for tId in model.getTrackModel().trackIDs(True):
            track = model.getTrackModel().trackSpots(tId)

            # Ensure track spots dir exists
            trackOut = os.path.join(wellPath, chanName + "_track_spots")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')

            # Write Header
            header = 'Name, ID, Frame, '
            for feature in track.toArray()[0].getFeatures().keySet():
                if feature == 'Frame':
                    continue
                header += feature + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)
            # Write spot data
            avgTotalIntensity = 0
            for spot in track:
                #print spot.echo()
                data = [
                    spot.getName(),
                    str(spot.ID()),
                    str(spot.getFeature('FRAME'))
                ]
                for feature in spot.getFeatures():
                    if feature == 'Frame':
                        continue
                    elif feature == 'TOTAL_INTENSITY':
                        avgTotalIntensity += spot.getFeature(feature)
                    data.append(str(spot.getFeature(feature)))
                trackFile.write(','.join(data) + '\n')
            trackFile.close()
            avgTotalIntensity /= len(track)

            # Write out track stats
            # Make sure dir exists
            trackOut = os.path.join(wellPath, chanName + "_tracks")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')
            # Fetch the track feature from the feature model.
            header = ''
            for featName in fm.getTrackFeatureNames():
                header += featName + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)

            features = ''
            for featName in fm.getTrackFeatureNames():
                features += str(fm.getTrackFeature(tId, featName)) + ', '
            features = features[0:len(features) - 2]
            features += '\n'
            trackFile.write(features)
            trackFile.write('\n')
            trackFile.close()

            trackDat[tId] = [
                str(tId),
                str(fm.getTrackFeature(tId, 'TRACK_DURATION')),
                str(avgTotalIntensity),
                str(fm.getTrackFeature(tId, 'TRACK_START')),
                str(fm.getTrackFeature(tId, 'TRACK_STOP'))
            ]

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write(
            'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n'
        )
        for track in trackDat:
            trackFile.write(','.join(trackDat[track]) + '\n')
        trackFile.close()

        trackOut = os.path.join(wellPath, chanName + "_trackModel.xml")
        trackFile = File(trackOut)
        writer = TmXmlWriter(trackFile, model.getLogger())
        #writer.appendLog( logPanel.getTextContent() );
        writer.appendModel(trackmate.getModel())
        writer.appendSettings(trackmate.getSettings())
        #writer.appendGUIState( controller.getGuimodel() );
        writer.writeToFile()

    model.clearSpots(True)
    model.clearTracks(True)

    return trackDat
def nucleus_detection(infile, nucleus_channel, stacksize, animation):
	# Detect nucleus with 3d log filters
    fullpath = infile
    infile = filename(infile)
    IJ.log("Start Segmentation " + str(infile))
    # First get Nb Stacks
    reader = ImageReader()
    omeMeta = MetadataTools.createOMEXMLMetadata()
    reader.setMetadataStore(omeMeta)
    reader.setId(fullpath)
    default_options = "stack_order=XYCZT color_mode=Composite view=Hyperstack specify_range c_begin=" + \
        str(nucleus_channel) + " c_end=" + str(nucleus_channel) + \
        " c_step=1 open=[" + fullpath + "]"
    NbStack = reader.getSizeZ()
    reader.close()
    output = re.sub('.ids', '.csv', infile)
    with open(os.path.join(folder5, output), 'wb') as outfile:
        DETECTwriter = csv.writer(outfile, delimiter=',')
        DETECTwriter.writerow(
            ['spotID', 'roundID', 'X', 'Y', 'Z', 'QUALITY', 'SNR', 'INTENSITY'])
    rounds = NbStack // stacksize
    spotID = 1
    for roundid in xrange(1, rounds + 2):
        # Process stacksize by stacksize otherwise crash because too many spots
        Zstart = (stacksize * roundid - stacksize + 1)
        Zend = (stacksize * roundid)
        if(Zend > NbStack):
            Zend = NbStack % stacksize + (roundid - 1) * stacksize
        IJ.log("Round:" + str(roundid) + ' Zstart=' + str(Zstart) +
               ' Zend=' + str(Zend) + ' out of ' + str(NbStack))
        IJ.run("Bio-Formats Importer", default_options + " z_begin=" +
               str(Zstart) + " z_end=" + str(Zend) + " z_step=1")
        imp = IJ.getImage()
        imp.show()
        cal = imp.getCalibration()
        model = Model()
        settings = Settings()
        settings.setFrom(imp)
        # Configure detector - Manually determined as best
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS': 5.5,
            'TARGET_CHANNEL': 1,
            'THRESHOLD': 50.0,
            'DO_MEDIAN_FILTERING': False,
        }
        filter1 = FeatureFilter('QUALITY', 1, True)
        settings.addSpotFilter(filter1)
        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

        trackmate = TrackMate(model, settings)
        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))
        try:
            ok = trackmate.process()
        except:
            IJ.log("Nothing detected, Round:" + str(roundid) + ' Zstart=' +
                   str(Zstart) + ' Zend=' + str(Zend) + ' out of ' + str(NbStack))
            IJ.selectWindow(infile)
            IJ.run('Close')
            continue
        else:
            if animation:
                # For plotting purpose only
                imp.setPosition(1, 1, imp.getNFrames())
                imp.getProcessor().setMinAndMax(0, 4000)
                selectionModel = SelectionModel(model)
                displayer = HyperStackDisplayer(model, selectionModel, imp)
                displayer.render()
                displayer.refresh()
                for i in xrange(1, imp.getNSlices() + 1):
                    imp.setSlice(i)
                    time.sleep(0.05)
            IJ.selectWindow(infile)
            IJ.run('Close')
            spots = model.getSpots()
            spotIt = spots.iterator(0, False)
            sid = []
            sroundid = []
            x = []
            y = []
            z = []
            q = []
            snr = []
            intensity = []
            for spot in spotIt:
                sid.append(spotID)
                spotID = spotID + 1
                sroundid.append(roundid)
                x.append(spot.getFeature('POSITION_X'))
                y.append(spot.getFeature('POSITION_Y'))
                q.append(spot.getFeature('QUALITY'))
                snr.append(spot.getFeature('SNR'))
                intensity.append(spot.getFeature('MEAN_INTENSITY'))
                # Correct Z position
                correct_z = spot.getFeature(
                    'POSITION_Z') + (roundid - 1) * float(stacksize) * cal.pixelDepth
                z.append(correct_z)
            with open(os.path.join(folder5, output), 'ab') as outfile:
                DETECTwriter = csv.writer(outfile, delimiter=',')
                Sdata = zip(sid, sroundid, x, y, z, q, snr, intensity)
                for Srow in Sdata:
                    DETECTwriter.writerow(Srow)