Example #1
0
        elif data_type == 'sku':
            search_data = [row[0] for row in file_data[1:]]
            return search_data        


    
#determine SKU or node search
data_type = search_type()

search_level = 'cat.CATEGORY_ID'

gws_df = pd.DataFrame()
grainger_df = pd.DataFrame()

if data_type == 'node':
    search_level = fd.blue_search_level()

elif data_type == 'value' or data_type == 'name':
    while True:
        try:
            val_type = input('Search Type?:\n1. Exact value \n2. Value contained in field ')
            if val_type in ['1', 'EXACT', 'exact', 'Exact']:
                val_type = 'exact'
                break
            elif val_type in ['2', '%']:
                val_type = 'approx'
                break
        except ValueError:
            print('Invalid search type')

search_data = data_in(data_type, settings.directory_name)
def generate_data():
    gcom = GraingerQuery()

    #request the type of data to pull: blue or yellow, SKUs or node, single entry or read from file
    data_type = fd.search_type()
    search_level = 'cat.CATEGORY_ID'
    #if Blue is chosen, determine the level to pull L1 (segment), L2 (family), or L1 (category)
    if data_type == 'node':
        search_level = fd.blue_search_level()

    #ask user for node number/SKU or pull from file if desired
    search_data = fd.data_in(data_type, settings.directory_name)

    sku_status = skus_to_pull(
    )  #determine whether or not to include discontinued items in the data pull

    grainger_df = pd.DataFrame()

    if data_type == 'node':
        for k in search_data:
            if sku_status == 'filtered':
                temp_df = gcom.grainger_q(grainger_basic_query, search_level,
                                          k)
                temp_df = gcom.grainger_q(grainger_basic_query, search_level,
                                          k)

            elif sku_status == 'all':
                temp_df = gcom.grainger_q(grainger_discontinued_query,
                                          search_level, k)

            grainger_df = pd.concat([grainger_df, temp_df], axis=0)
            print(k)

    elif data_type == 'yellow':
        for k in search_data:
            if isinstance(k, int):  #k.isdigit() == True:
                pass
            else:
                k = "'" + str(k) + "'"

            if sku_status == 'filtered':
                temp_df = gcom.grainger_q(grainger_basic_query,
                                          'yellow.PROD_CLASS_ID', k)
            elif sku_status == 'all':
                temp_df = gcom.grainger_q(grainger_discontinued_query,
                                          'yellow.PROD_CLASS_ID', k)

            grainger_df = pd.concat([grainger_df, temp_df], axis=0)
            print(k)

    elif data_type == 'sku':
        sku_str = ", ".join("'" + str(i) + "'" for i in search_data)

        if sku_status == 'filtered':
            grainger_df = gcom.grainger_q(grainger_basic_query,
                                          'item.MATERIAL_NO', sku_str)
        elif sku_status == 'all':
            grainger_df = gcom.grainger_q(grainger_discontinued_query,
                                          'item.MATERIAL_NO', sku_str)

    elif data_type == 'supplier':
        for k in search_data:
            if sku_status == 'filtered':
                temp_df = gcom.grainger_q(grainger_basic_query,
                                          'supplier.SUPPLIER_NO', k)
            elif sku_status == 'all':
                temp_df = gcom.grainger_q(grainger_discontinued_query,
                                          'supplier.SUPPLIER_NO', k)

            grainger_df = pd.concat([grainger_df, temp_df], axis=0)
            print(k)

    return [grainger_df, search_level]