def learn(args): # 1. Obtengo los patrones de entrenamiento # inputs, outputs = fp.parse_file('terrains/terrain4.txt', -1) _inputs, _outputs = fp.parse_file('terrains/terrain4.txt', -1) inputs, outputs, _inputs_test, _outputs_test = randomTerrain(300, _inputs, _outputs) patterns = len(outputs) arquitecture = [2, args.hl1, args.hl2, 1] fun = args.g_fun ecm = args.ecm eta = args.eta alfa = args.alpha #los valores a,b,k en cero desactiva el eta adaptativo a = args.a b = args.b k = args.k # 2. Entreno la red #multilayer_perceptron(arquitecture, input, output, bias, beta, eta, error_cuad, fun, alfa, a, b, k): errors, epoch, out, weights = bp.train(arquitecture, inputs, outputs, -1, 0.5, eta, ecm, fun, alfa, a, b, k) fp.plotX1X2Z(inputs, out) #fp.plotOriginals(inputs,outputs) # 3. Obtengo los patrones de testeo inputs, outputs = fp.parse_file('terrains/terrain4-test-1.txt', -1) # 4. Testeo la red # out = bp.test(arquitecture, inputs, outputs, -1, 0.5, eta, fun, weights) out = bp.test(arquitecture, _inputs_test, _outputs_test, -1, 0.5, eta, fun, weights) # 5. Calculo porcentaje de aciertos y aproximaciones hit_p, apprx_p = percentage(outputs, out, ecm) print('Porcentaje de aciertos: ' + "%.2f" % round(hit_p,2) + '% - Porcentaje de aproximaciones: ' + "%.2f" % round(apprx_p,2) + '%') fp.plotX1X2Z(inputs, out) #fp.plotOriginals(inputs, outputs) plt.plot(range(1, epoch), errors) plt.xlabel('Epoca') plt.ylabel('Error cuadratico medio') plt.title('Red neuronal con arquitectura ' + str(arquitecture) + ', cantidad de patrones: ' + str(patterns) + ', funcion de activacion: ' + fun) plt.show() return
def get_closest_store(current_location): store_list = parse_file('com/resources/store-locations.csv') closest_store = find_closest_store(current_location, store_list) if closest_store is None: sys.exit('No stores found, something went wrong') return closest_store
def main(argv): input_files = [] help_text = 'main.py -i <input_file>' try: opts, args = getopt.getopt(argv, "h:i:", ["ifile="]) except getopt.GetoptError: print(help_text) sys.exit() if len(opts) < 1: print(help_text) sys.exit() for opt, arg in opts: if opt == "-h": print(help_text) sys.exit() elif opt in ("-i", "--ifile"): input_files.append(arg) if len(input_files) > 0: for file in input_files: print("Opening file" + file) parse_file(file) else: print(help_text) sys.exit()
def insert_blocks(self, mineral_deposit, block_model, data_file): model = self.fetch_block_model(mineral_deposit, block_model) headers, amount_headers, data_map, weight_column, weight_column_index, grades_data_map = self.get_params_from_model( model) data = parse_file(data_file) data_array = [] grade_units = ['tonn', 'percentage', 'oz/tonn', 'ppm'] self.print_units(grade_units) my_units = self.select_options_for_units(grade_units, grades_data_map) for item in data: document = self.create_block_document(mineral_deposit, block_model, amount_headers, headers, grades_data_map, item, weight_column_index, grade_units, my_units) data_array.append(document) self.db.blocks.insert_many(data_array)
def get_game_file_stats(filename): game, winner = file_parser.parse_file(filename) game = _normalize_game(game) num_turns = len(game) final_board = game[num_turns -1] stats_teamA = {} stats_teamB = {} stats_teamA['wins'] = 0 stats_teamA['looses'] = 0 stats_teamA['draws'] = 0 stats_teamA['turns_winning'] = 0 stats_teamA['turns_losing'] = 0 stats_teamB['wins'] = 0 stats_teamB['looses'] = 0 stats_teamB['draws'] = 0 stats_teamB['turns_winning'] = 0 stats_teamB['turns_losing'] = 0 if winner == 1: stats_teamA['wins'] = 1 stats_teamB['looses'] = 1 stats_teamA['turns_winning'] = num_turns stats_teamB['turns_losing'] = num_turns elif winner == -1: stats_teamA['looses'] = 1 stats_teamB['wins'] = 1 stats_teamA['turns_losing'] = num_turns stats_teamB['turns_winning'] = num_turns else: stats_teamA['draws'] = 1 stats_teamB['draws'] = 1 stats_teamA['num_pieces'], stats_teamB['num_pieces'] = _count_pieces(final_board) stats_teamA['val_pieces'], stats_teamB['val_pieces'] = _count_values(final_board) stats_teamA['max_death'], stats_teamB['max_death'] = _check_death(6, game) return (stats_teamA, stats_teamB)
def load_sentries(world, level): # load all the sentries for a given level from the file file_name = SENTRY_FILE print(file_parser.parse_file(SENTRY_FILE)) with open(file_name, 'r') as file: lines = file.readlines() # read the whole file into a string array i = 0 while i < len(lines): while i < len(lines) and lines[ i][:-1] != SENTRY_START: # look for the start of a sentry definition i += 1 if i < len(lines): all_sentries = [] name = lines[i + 1][:-1] # strip trailing CRLF sentry_level = eval(lines[i + 2]) position = eval(lines[i + 3]) display_program = [] if sentry_level == level: # only create the sentries for this game level s = Sentry(world, position, name) all_sentries.append(s) i += 3 # skip on to next sentry return all_sentries
import file_parser import search import GUI def search_word(word): return search.do_search(word) if __name__ == "__main__": file_parser.parse_file("test-data.txt") # docsList=[] # app.run(host="localhost") GUI.vp_start_gui()
import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from celluloid import Camera from file_parser import parse_file if __name__ == '__main__': N, L, t_max, x_values, y_values = parse_file("../CIMOutput.txt") camera = Camera(plt.figure()) for i in range(t_max): show_x = x_values[i] show_y = y_values[i] plt.scatter(x=show_x, y=show_y, c="black", marker='.', s=15) camera.snap() anim = camera.animate(blit=True) anim.save('scatter.gif')
header_file_name = header_folder+'/'+class_name + '.h' cpp_file_name = cpp_folder+'/'+class_name + '.cpp' test_file_name = '' if namespace_name != 'GUI': test_file_name = test_folder+'/'+class_name + 'Test.cpp' #define template names header_template = '' cpp_template = '' if is_factory: header_template = 'FactoryHTemplate.txt' cpp_template = 'FactoryCPPTemplate.txt' dictionary['FactoryType'] = factory_type dictionary['FACTORYTYPE'] = factory_type.upper() dictionary['factorytype'] = factory_type.lower() elif is_singleton: header_template = 'SingletonHTemplate.txt' cpp_template = 'SingletonCPPTemplate.txt' elif is_algorithm: header_template = 'AlgorithmHTemplate.txt' cpp_template = 'AlgorithmCPPTemplate.txt' else: header_template = 'ClassHTemplate.txt' cpp_template = 'ClassCPPTemplate.txt' parse_file(template_dir + header_template,root + header_file_name,dictionary) parse_file(template_dir + cpp_template,root + cpp_file_name,dictionary) if len(test_file_name) > 0: parse_file(template_dir + 'ClassTestTemplate.txt',root + test_file_name,dictionary)