Example #1
0
def density_plot(targ_ra, targ_dec, data, iso, g_radius, nbhd, type):
    """Stellar density plot"""

    if type == 'stars':
        filter = filters.star_filter(survey, data)
        plt.title('Stellar Density')
    elif type == 'galaxies':
        filter = filters.galaxy_filter(survey, data)
        plt.title('Galactic Density')
    elif type == 'blue_stars':
        filter = filters.color_filter(survey, data) \
               & filters.star_filter(survey, data)
        plt.title('Blue Stellar Density')

    iso_filter = simple_utils.cut_isochrone_path(data[mag_dered_1],
                                                 data[mag_dered_2],
                                                 data[mag_err_1],
                                                 data[mag_err_2],
                                                 iso,
                                                 radius=0.1,
                                                 return_all=False)

    # projection of image
    proj = ugali.utils.projector.Projector(targ_ra, targ_dec)
    x, y = proj.sphereToImage(data[filter & iso_filter][basis_1],
                              data[filter & iso_filter][basis_2])

    bound = 0.5  #1.
    steps = 100.
    bins = np.linspace(-bound, bound, steps)

    signal = np.histogram2d(x, y, bins=[bins, bins])[0]

    sigma = 0.01 * (0.25 * np.arctan(0.25 * g_radius * 60. - 1.5) + 1.3)

    convolution = scipy.ndimage.filters.gaussian_filter(
        signal, sigma / (bound / steps))
    plt.pcolormesh(bins, bins, convolution.T, cmap='Greys')

    plt.xlim(bound, -bound)
    plt.ylim(-bound, bound)
    plt.gca().set_aspect('equal')
    plt.xlabel(r'$\Delta \alpha$ (deg)')
    plt.ylabel(r'$\Delta \delta$ (deg)')

    ax = plt.gca()
    divider = make_axes_locatable(ax)
    cax = divider.append_axes('right', size='5%', pad=0)
    plt.colorbar(cax=cax)
Example #2
0
def star_plot(ax, targ_ra, targ_dec, data, iso, g_radius, nbhd):
    """Star bin plot"""

    filter = filters.star_filter(survey, data)

    iso_filter = simple_utils.cut_isochrone_path(data[mag_dered_1],
                                                 data[mag_dered_2],
                                                 data[mag_err_1],
                                                 data[mag_err_2],
                                                 iso,
                                                 radius=0.1,
                                                 return_all=False)

    # projection of image
    proj = ugali.utils.projector.Projector(targ_ra, targ_dec)
    x, y = proj.sphereToImage(data[filter & iso_filter][basis_1],
                              data[filter & iso_filter][basis_2])

    ax.scatter(x, y, edgecolor='none', s=3, c='black')
    ax.set_xlim(0.2, -0.2)
    ax.set_ylim(-0.2, 0.2)
    #ax.gca().set_aspect('equal')
    ax.set_xlabel(r'$\Delta \alpha$ (deg)')
    ax.set_ylabel(r'$\Delta \delta$ (deg)')

    ax.set_title('Stars')
Example #3
0
def hess_plot(targ_ra, targ_dec, data, iso, g_radius, nbhd):
    """Hess plot"""

    filter = filters.star_filter(survey, data)

    plt.title('Hess')

    c1 = SkyCoord(targ_ra, targ_dec, unit='deg')

    r_near = 2. * g_radius  # annulus begins at 2*g_radius away from centroid
    r_far = np.sqrt(5.) * g_radius  # annulus has same area as inner area

    #inner = (c1.separation(SkyCoord(data[basis_1], data[basis_2], unit='deg')).deg < g_radius)
    #outer = (c1.separation(SkyCoord(data[basis_1], data[basis_2], unit='deg')).deg > r_near) & (c1.separation(SkyCoord(data[basis_1], data[basis_2], unit='deg')).deg < r_far)
    angsep = ugali.utils.projector.angsep(targ_ra, targ_dec, data[basis_1],
                                          data[basis_2])
    inner = (angsep < g_radius)
    outer = ((angsep > r_near) & (angsep < r_far))

    xbins = np.arange(-0.5, 1.1, 0.1)
    ybins = np.arange(16., mag_max + 0.5, 0.5)

    foreground = np.histogram2d(data[mag_dered_1][inner & filter] -
                                data[mag_dered_2][inner & filter],
                                data[mag_dered_1][inner & filter],
                                bins=[xbins, ybins])
    background = np.histogram2d(data[mag_dered_1][outer & filter] -
                                data[mag_dered_2][outer & filter],
                                data[mag_dered_1][outer & filter],
                                bins=[xbins, ybins])

    fg = foreground[0].T
    bg = background[0].T

    fg_abs = np.absolute(fg)
    bg_abs = np.absolute(bg)

    mask_abs = fg_abs + bg_abs
    mask_abs[mask_abs == 0.] = np.nan  # mask signficiant zeroes

    signal = fg - bg
    signal = np.ma.array(signal, mask=np.isnan(mask_abs))  # mask nan

    cmap = matplotlib.cm.viridis
    cmap.set_bad('w', 1.)
    plt.pcolormesh(xbins, ybins, signal, cmap=cmap)

    plt.colorbar()

    ugali.utils.plotting.drawIsochrone(iso,
                                       lw=2,
                                       c='k',
                                       zorder=10,
                                       label='Isocrhone')

    plt.axis([-0.5, 1.0, 16, mag_max])
    plt.gca().invert_yaxis()
    plt.gca().set_aspect(1. / 4.)
    plt.xlabel('{} - {} (mag)'.format(band_1.lower(), band_2.lower()))
    plt.ylabel('{} (mag)'.format(band_1.lower()))
Example #4
0
def cm_plot(targ_ra, targ_dec, data, iso, g_radius, nbhd, type):
    """Color-magnitude plot"""

    angsep = ugali.utils.projector.angsep(targ_ra, targ_dec, data[basis_1],
                                          data[basis_2])
    annulus = (angsep > g_radius) & (angsep < 1.)

    if type == 'stars':
        filter = filters.star_filter(survey, data)
        plt.title('Stellar Color-Magnitude')
    elif type == 'galaxies':
        filter = filters.galaxy_filter(survey, data)
        plt.title('Galactic Color-Magnitude')

    iso_filter = simple_utils.cut_isochrone_path(data[mag_dered_1],
                                                 data[mag_dered_2],
                                                 data[mag_err_1],
                                                 data[mag_err_2],
                                                 iso,
                                                 radius=0.1,
                                                 return_all=False)

    # Plot background objects
    plt.scatter(data[mag_dered_1][filter & annulus] -
                data[mag_dered_2][filter & annulus],
                data[mag_dered_1][filter & annulus],
                c='k',
                alpha=0.1,
                edgecolor='none',
                s=1)

    # Plot isochrone
    ugali.utils.plotting.drawIsochrone(iso,
                                       lw=2,
                                       label='{} Gyr, z = {}'.format(
                                           iso.age, iso.metallicity))

    # Plot objects in nbhd
    plt.scatter(data[mag_dered_1][filter & nbhd] -
                data[mag_dered_2][filter & nbhd],
                data[mag_dered_2][filter & nbhd],
                c='g',
                s=5,
                label='r < {:.3f}$^\circ$'.format(g_radius))

    # Plot objects in nbhd and near isochrone
    plt.scatter(data[mag_dered_1][filter & nbhd & iso_filter] -
                data[mag_dered_2][filter & nbhd & iso_filter],
                data[mag_dered_1][filter & nbhd & iso_filter],
                c='r',
                s=5,
                label='$\Delta$CM < 0.1')

    plt.axis([-0.5, 1, 16, mag_max])
    plt.gca().invert_yaxis()
    plt.gca().set_aspect(1. / 4.)
    plt.legend(loc='upper left')
    plt.xlabel('{} - {} (mag)'.format(band_1.lower(), band_2.lower()))
    plt.ylabel('{} (mag)'.format(band_1.lower()))
Example #5
0
    def value_errors(type, seln):
        if type == 'stars':
            filter = filters.star_filter(survey, data)
        elif type == 'galaxies':
            filter = filters.galaxy_filter(survey, data)
        if seln == 'f':
            iso_filter = iso_seln_f
        elif seln == 'u':
            iso_filter = iso_seln_u

        hist = np.histogram(angsep[(angsep < 0.4) & filter & iso_filter],
                            bins=bins)[0]  # counts

        val = hist / area
        yerr = np.sqrt(hist) / area

        return (val, yerr)
Example #6
0
    def interp_values(type, seln):
        if type == 'stars':
            filter = filters.star_filter(survey, data)
        elif type == 'galaxies':
            filter = filters.galaxy_filter(survey, data)

        if seln == 'f':
            iso_filter = iso_seln_f
        elif seln == 'u':
            iso_filter = iso_seln_u

        hist = np.histogram(angsep[(angsep < 0.4) & filter & iso_filter],
                            bins=bins)[0]  # counts

        f_interp = interpolate.interp1d(
            np.linspace(centers[0], centers[-1], len(hist)), hist / area,
            'cubic')
        f_range = np.linspace(centers[0], centers[-1], 1000)
        f_val = f_interp(f_range)

        return (f_range, f_val)
Example #7
0
# Deredden magnitudes
data = filters.dered_mag(survey, data)

print('Found {} objects...').format(len(data))
if (len(data) == 0):
    print('Ending search prematurely. Look at data for debugging.')
    nan_array = [np.nan]
    simple_utils.write_output(results_dir, nside, pix_nside_select, nan_array,
                              nan_array, nan_array, nan_array, nan_array,
                              nan_array, nan_array, nan_array, [mc_source_id],
                              mode, outfile)
    exit()

print('Applying cuts...')
cut = filters.star_filter(survey, data)
cut_gal = filters.galaxy_filter(survey, data)

data_gal = data[
    cut_gal]  # this isn't used at all other than for noting number of galaxy-like objects in ROI
data = data[cut]

print('{} star-like objects in ROI...'.format(len(data)))
print('{} galaxy-like objects in ROI...'.format(len(data_gal)))
if (mode == 1):
    print('{} simulated objects in ROI...'.format(
        np.sum(data['MC_SOURCE_ID'] != 0)))

# Read in fracdet map
if (fracdet_map is not None) and (fracdet_map.lower().strip() !=
                                  'none') and (fracdet_map != ''):
Example #8
0
def analysis(targ_ra, targ_dec, mod, mc_source_id):
    """Analyze a candidate"""

    pix_nside_select = ugali.utils.healpix.angToPix(nside, targ_ra, targ_dec)
    ra_select, dec_select = ugali.utils.healpix.pixToAng(
        nside, pix_nside_select)
    pix_nside_neighbors = np.concatenate([[pix_nside_select],
                                          healpy.get_all_neighbours(
                                              nside, pix_nside_select)])

    # Construct data
    #data = simple_utils.construct_modal_data(mode, pix_nside_neighbors)
    data = simple_utils.construct_real_data(pix_nside_neighbors)
    if (mode == 0):
        print('mode = 0: running only on real data')
    elif (mode == 1):
        print('mode = 1: running on real data and simulated data')

        # inject objects for simulated object of mc_source_id
        sim_data = simple_utils.construct_sim_data(pix_nside_neighbors,
                                                   mc_source_id)
        data = simple_utils.inject_sim(data, sim_data, mc_source_id)
    else:
        print('No mode specified; running only on real data')

    print('Loading data...')
    data = simple_utils.construct_modal_data(mode, pix_nside_neighbors,
                                             mc_source_id)
    quality_cut = filters.quality_filter(survey, data)
    data = data[quality_cut]
    print('Found {} objects...').format(len(data))

    data = filters.dered_mag(survey, data)

    # This should be generalized to also take the survey
    iso = isochrone_factory(name=isoname,
                            survey=isosurvey,
                            age=12,
                            z=0.0001,
                            distance_modulus=mod,
                            band_1=band_1.lower(),
                            band_2=band_2.lower())

    # g_radius estimate
    filter = filters.star_filter(survey, data)

    iso_filter = simple_utils.cut_isochrone_path(data[mag_dered_1],
                                                 data[mag_dered_2],
                                                 data[mag_err_1],
                                                 data[mag_err_2],
                                                 iso,
                                                 radius=0.1,
                                                 return_all=False)

    angsep = ugali.utils.projector.angsep(targ_ra, targ_dec, data[basis_1],
                                          data[basis_2])

    bins = np.linspace(0, 0.4, 21)  # deg
    centers = 0.5 * (bins[1:] + bins[0:-1])
    area = np.pi * (bins[1:]**2 - bins[0:-1]**2) * 60**2
    hist = np.histogram(angsep[(angsep < 0.4) & filter & iso_filter],
                        bins=bins)[0]  # counts

    f_interp = interpolate.interp1d(
        np.linspace(centers[0], centers[-1], len(hist)), hist / area, 'cubic')
    f_range = np.linspace(centers[0], centers[-1], 1000)
    f_val = f_interp(f_range)

    pairs = zip(f_range, f_val)

    peak = max(pairs[:len(pairs) / 4],
               key=lambda x: x[1])  # find peak within first quarter

    def peak_index(pairs, peak):
        for i in range(len(pairs)):
            if pairs[i] == peak:
                return i

    osc = int(
        0.04 / 0.4 *
        1000)  # +/- 0.04 (rounded down) deg oscillation about local extremum
    relmin = argrelextrema(f_val, np.less, order=osc)[0]

    try:
        if len(relmin) > 0:
            #half_point = f_range[relmin[0]]
            i = 0
            while ((f_range[relmin[i]] <= f_range[peak_index(pairs, peak)]) &
                   (i <= len(relmin) - 1)):
                i += 1
            half_point = f_range[relmin[i]]
        elif len(relmin) == 0:
            half_peak = (
                peak[1] + np.mean(f_val[len(f_val) / 4:])
            ) / 2.  # normalized to background (after first quarter)
            #half_peak = np.mean(f_val[len(f_val)/4:])
            half_pairs = []
            for i in pairs[peak_index(pairs, peak):len(pairs) /
                           2]:  # start after peak, stay within first quarter
                if i != peak:
                    half_pairs.append((i[0], abs(i[1] - half_peak)))
            half_point = min(half_pairs, key=lambda x: x[1])[0]  # deg
    except:
        half_point = 0.1  # fixed value to catch errors

    g_min = 0.5 / 60.  # deg
    g_max = 12. / 60.  # deg

    if half_point < g_min:
        g_radius = g_min
    elif half_point > g_max:
        g_radius = g_max
    else:
        g_radius = half_point  # deg

    angsep = ugali.utils.projector.angsep(targ_ra, targ_dec, data[basis_1],
                                          data[basis_2])
    nbhd = (angsep < g_radius)

    return (data, iso, g_radius, nbhd)