Example #1
0
def loadHeterogeneousSpreadCurves(valuation_date, libor_curve):

    maturity3Y = valuation_date.nextCDSDate(36)
    maturity5Y = valuation_date.nextCDSDate(60)
    maturity7Y = valuation_date.nextCDSDate(84)
    maturity10Y = valuation_date.nextCDSDate(120)
    path = os.path.join(os.path.dirname(__file__),
                        './/data//CDX_NA_IG_S7_SPREADS.csv')
    f = open(path, 'r')
    data = f.readlines()
    f.close()
    issuer_curves = []

    for row in data[1:]:

        splitRow = row.split(",")
        spd3Y = float(splitRow[1]) / 10000.0
        spd5Y = float(splitRow[2]) / 10000.0
        spd7Y = float(splitRow[3]) / 10000.0
        spd10Y = float(splitRow[4]) / 10000.0
        recovery_rate = float(splitRow[5])

        cds3Y = FinCDS(valuation_date, maturity3Y, spd3Y)
        cds5Y = FinCDS(valuation_date, maturity5Y, spd5Y)
        cds7Y = FinCDS(valuation_date, maturity7Y, spd7Y)
        cds10Y = FinCDS(valuation_date, maturity10Y, spd10Y)
        cds_contracts = [cds3Y, cds5Y, cds7Y, cds10Y]

        issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                   recovery_rate)

        issuer_curves.append(issuer_curve)

    return issuer_curves
def loadHomogeneousSpreadCurves(valuation_date, libor_curve, cdsSpread3Y,
                                cdsSpread5Y, cdsSpread7Y, cdsSpread10Y,
                                num_credits):

    maturity3Y = valuation_date.nextCDSDate(36)
    maturity5Y = valuation_date.nextCDSDate(60)
    maturity7Y = valuation_date.nextCDSDate(84)
    maturity10Y = valuation_date.nextCDSDate(120)

    recovery_rate = 0.40

    cds3Y = FinCDS(valuation_date, maturity3Y, cdsSpread3Y)
    cds5Y = FinCDS(valuation_date, maturity5Y, cdsSpread5Y)
    cds7Y = FinCDS(valuation_date, maturity7Y, cdsSpread7Y)
    cds10Y = FinCDS(valuation_date, maturity10Y, cdsSpread10Y)

    contracts = [cds3Y, cds5Y, cds7Y, cds10Y]

    issuer_curve = FinCDSCurve(valuation_date, contracts, libor_curve,
                               recovery_rate)

    issuer_curves = []
    for _ in range(0, num_credits):
        issuer_curves.append(issuer_curve)

    return issuer_curves
def test_valueCDSIndex():

    # We treat an index as a CDS contract with a flat CDS curve
    tradeDate = Date(7, 2, 2006)
    libor_curve = buildIborCurve(tradeDate)
    issuer_curve = buildIssuerCurve(tradeDate, libor_curve)
    step_in_date = tradeDate.addDays(1)
    valuation_date = step_in_date
    maturity_date = Date(20, 6, 2010)

    cdsRecovery = 0.40
    notional = 10.0 * ONE_MILLION
    long_protection = True
    index_coupon = 0.004

    cdsIndexContract = FinCDS(step_in_date, maturity_date, index_coupon,
                              notional, long_protection)

    #    cdsIndexContract.print(valuation_date)

    testCases.header("LABEL", "VALUE")

    spd = cdsIndexContract.parSpread(valuation_date, issuer_curve,
                                     cdsRecovery) * 10000.0
    testCases.print("PAR SPREAD", spd)

    v = cdsIndexContract.value(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("FULL VALUE", v['full_pv'])
    testCases.print("CLEAN VALUE", v['clean_pv'])

    p = cdsIndexContract.clean_price(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("CLEAN PRICE", p)

    accrued_days = cdsIndexContract.accrued_days()
    testCases.print("ACCRUED DAYS", accrued_days)

    accruedInterest = cdsIndexContract.accruedInterest()
    testCases.print("ACCRUED COUPON", accruedInterest)

    prot_pv = cdsIndexContract.protectionLegPV(valuation_date, issuer_curve,
                                               cdsRecovery)
    testCases.print("PROTECTION LEG PV", prot_pv)

    premPV = cdsIndexContract.premiumLegPV(valuation_date, issuer_curve,
                                           cdsRecovery)
    testCases.print("PREMIUM LEG PV", premPV)

    fullRPV01, cleanRPV01 = cdsIndexContract.riskyPV01(valuation_date,
                                                       issuer_curve)
    testCases.print("FULL  RPV01", fullRPV01)
    testCases.print("CLEAN RPV01", cleanRPV01)
Example #4
0
def test_CDSFastApproximation():

    valuation_date = Date(20, 6, 2018)
    # I build a discount curve that requires no bootstrap
    times = np.linspace(0, 10.0, 11)
    r = 0.05

    discount_factors = np.power((1.0 + r), -times)
    dates = valuation_date.addYears(times)

    libor_curve = DiscountCurve(valuation_date, dates, discount_factors,
                                FinInterpTypes.FLAT_FWD_RATES)

    ##########################################################################

    maturity_date = valuation_date.nextCDSDate(120)
    t = (maturity_date - valuation_date) / 365.242
    z = libor_curve.df(maturity_date)
    r = -np.log(z) / t

    recovery_rate = 0.40

    contractCoupon = 0.010

    testCases.header("MKT_SPD", "EXACT_VALUE", "APPROX_VALUE", "DIFF(%NOT)")

    for mktCoupon in np.linspace(0.000, 0.05, 21):

        cds_contracts = []

        cdsMkt = FinCDS(valuation_date, maturity_date, mktCoupon, ONE_MILLION)

        cds_contracts.append(cdsMkt)

        issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                   recovery_rate)

        cds_contract = FinCDS(valuation_date, maturity_date, contractCoupon)
        v_exact = cds_contract.value(valuation_date, issuer_curve,
                                     recovery_rate)['full_pv']
        v_approx = cds_contract.valueFastApprox(valuation_date, r, mktCoupon,
                                                recovery_rate)[0]
        pctdiff = (v_exact - v_approx) / ONE_MILLION * 100.0
        testCases.print(mktCoupon * 10000, v_exact, v_approx, pctdiff)
Example #5
0
def test_full_priceCDSConvergence():

    _, issuer_curve = buildFullIssuerCurve1(0.0, 0.0)

    # This is the 10 year contract at an off market coupon
    maturity_date = Date(20, 6, 2029)
    cdsCoupon = 0.0150
    notional = ONE_MILLION
    long_protection = False
    tradeDate = Date(9, 8, 2019)
    valuation_date = tradeDate.addDays(1)

    cds_contract = FinCDS(valuation_date, maturity_date, cdsCoupon, notional,
                          long_protection)

    cdsRecovery = 0.40

    testCases.header("NumSteps", "Value")
    for n in [10, 50, 100, 500, 1000]:
        v_full = cds_contract.value(valuation_date, issuer_curve, cdsRecovery,
                                    0, 1, n)['full_pv']
        testCases.print(n, v_full)
Example #6
0
def buildFlatIssuerCurve(tradeDate, libor_curve, spread, recovery_rate):

    valuation_date = tradeDate.addDays(1)

    cdsMarketContracts = []

    maturity_date = Date(29, 6, 2010)
    cds = FinCDS(valuation_date, maturity_date, spread)
    cdsMarketContracts.append(cds)

    issuer_curve = FinCDSCurve(valuation_date, cdsMarketContracts, libor_curve,
                               recovery_rate)

    return issuer_curve
def buildIssuerCurve(tradeDate, libor_curve):

    valuation_date = tradeDate.addDays(1)

    cdsMarketContracts = []

    cdsCoupon = 0.0048375
    maturity_date = Date(20, 6, 2010)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    recovery_rate = 0.40

    issuer_curve = FinCDSCurve(valuation_date, cdsMarketContracts, libor_curve,
                               recovery_rate)
    return issuer_curve
Example #8
0
def test_IssuerCurveBuild():
    """ Test issuer curve build with simple libor curve to isolate cds
    curve building time cost. """

    valuation_date = Date(20, 6, 2018)

    times = np.linspace(0.0, 10.0, 11)
    r = 0.05
    discount_factors = np.power((1.0 + r), -times)
    dates = valuation_date.addYears(times)
    libor_curve = DiscountCurve(valuation_date, dates, discount_factors,
                                FinInterpTypes.FLAT_FWD_RATES)
    recovery_rate = 0.40

    cds_contracts = []

    cdsCoupon = 0.005  # 50 bps
    maturity_date = valuation_date.addMonths(12)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    cdsCoupon = 0.0055
    maturity_date = valuation_date.addMonths(24)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    cdsCoupon = 0.0060
    maturity_date = valuation_date.addMonths(36)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    cdsCoupon = 0.0065
    maturity_date = valuation_date.addMonths(60)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    cdsCoupon = 0.0070
    maturity_date = valuation_date.addMonths(84)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    cdsCoupon = 0.0073
    maturity_date = valuation_date.addMonths(120)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cds_contracts.append(cds)

    issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                               recovery_rate)

    return cds_contracts, issuer_curve
Example #9
0
def test_CDSDateGeneration():

    # This is the 10 year contract at an off market coupon
    maturity_date = Date(20, 6, 2029)
    cdsCoupon = 0.0100

    tradeDate = Date(9, 8, 2019)
    valuation_date = tradeDate.addDays(1)

    cds_contract = FinCDS(valuation_date, maturity_date, cdsCoupon,
                          ONE_MILLION, True, FrequencyTypes.QUARTERLY,
                          DayCountTypes.ACT_360, CalendarTypes.WEEKEND,
                          BusDayAdjustTypes.FOLLOWING,
                          DateGenRuleTypes.BACKWARD)

    testCases.header("Flow Date", "AccrualFactor", "Flow")
    num_flows = len(cds_contract._adjusted_dates)
    for n in range(0, num_flows):
        testCases.print(str(cds_contract._adjusted_dates[n]),
                        cds_contract._accrual_factors[n],
                        cds_contract._flows[n])
Example #10
0
def buildFullIssuerCurve2(mktSpreadBump, irBump):

    # https://www.markit.com/markit.jsp?jsppage=pv.jsp
    # YIELD CURVE 20 August 2020 SNAP AT 1600

    m = 1.0

    valuation_date = Date(24, 8, 2020)
    settlement_date = Date(24, 8, 2020)
    dcType = DayCountTypes.ACT_360
    depos = []

    maturity_date = settlement_date.addMonths(1)
    depo1 = FinIborDeposit(settlement_date, maturity_date, m * 0.001709,
                           dcType)

    maturity_date = settlement_date.addMonths(2)
    depo2 = FinIborDeposit(settlement_date, maturity_date, m * 0.002123,
                           dcType)

    maturity_date = settlement_date.addMonths(3)
    depo3 = FinIborDeposit(settlement_date, maturity_date, m * 0.002469,
                           dcType)

    maturity_date = settlement_date.addMonths(6)
    depo4 = FinIborDeposit(settlement_date, maturity_date, m * 0.003045,
                           dcType)

    maturity_date = settlement_date.addMonths(12)
    depo5 = FinIborDeposit(settlement_date, maturity_date, m * 0.004449,
                           dcType)

    depos.append(depo1)
    depos.append(depo2)
    depos.append(depo3)
    depos.append(depo4)
    depos.append(depo5)

    swaps = []
    dcType = DayCountTypes.THIRTY_E_360_ISDA
    fixedFreq = FrequencyTypes.SEMI_ANNUAL

    maturity_date = settlement_date.addMonths(24)
    swap1 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.002155 + irBump, fixedFreq, dcType)
    swaps.append(swap1)

    maturity_date = settlement_date.addMonths(36)
    swap2 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.002305 + irBump, fixedFreq, dcType)
    swaps.append(swap2)

    maturity_date = settlement_date.addMonths(48)
    swap3 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.002665 + irBump, fixedFreq, dcType)
    swaps.append(swap3)

    maturity_date = settlement_date.addMonths(60)
    swap4 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.003290 + irBump, fixedFreq, dcType)
    swaps.append(swap4)

    libor_curve = IborSingleCurve(valuation_date, depos, [], swaps)

    cdsCoupon = 0.01 + mktSpreadBump

    cdsMarketContracts = []
    effective_date = Date(21, 8, 2020)
    cds = FinCDS(effective_date, "6M", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "1Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "2Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "3Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "4Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "5Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "7Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    cds = FinCDS(effective_date, "10Y", cdsCoupon)
    cdsMarketContracts.append(cds)

    recovery_rate = 0.40

    issuer_curve = FinCDSCurve(settlement_date, cdsMarketContracts,
                               libor_curve, recovery_rate)

    testCases.header("DATE", "DISCOUNT_FACTOR", "SURV_PROB")
    years = np.linspace(0.0, 10.0, 20)
    dates = settlement_date.addYears(years)
    for dt in dates:
        df = libor_curve.df(dt)
        q = issuer_curve.survProb(dt)
        testCases.print("%16s" % dt, "%12.8f" % df, "%12.8f" % q)

    return libor_curve, issuer_curve
def test_performCDSIndexHazardRateAdjustment():

    tradeDate = Date(1, 8, 2007)
    step_in_date = tradeDate.addDays(1)
    valuation_date = step_in_date

    libor_curve = buildIborCurve(tradeDate)

    maturity3Y = tradeDate.nextCDSDate(36)
    maturity5Y = tradeDate.nextCDSDate(60)
    maturity7Y = tradeDate.nextCDSDate(84)
    maturity10Y = tradeDate.nextCDSDate(120)

    path = dirname(__file__)
    filename = "CDX_NA_IG_S7_SPREADS.csv"
    full_filename_path = join(path, "data", filename)
    f = open(full_filename_path, 'r')

    data = f.readlines()
    issuer_curves = []

    for row in data[1:]:

        splitRow = row.split(",")
        spd3Y = float(splitRow[1]) / 10000.0
        spd5Y = float(splitRow[2]) / 10000.0
        spd7Y = float(splitRow[3]) / 10000.0
        spd10Y = float(splitRow[4]) / 10000.0
        recovery_rate = float(splitRow[5])

        cds3Y = FinCDS(step_in_date, maturity3Y, spd3Y)
        cds5Y = FinCDS(step_in_date, maturity5Y, spd5Y)
        cds7Y = FinCDS(step_in_date, maturity7Y, spd7Y)
        cds10Y = FinCDS(step_in_date, maturity10Y, spd10Y)
        cds_contracts = [cds3Y, cds5Y, cds7Y, cds10Y]

        issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                   recovery_rate)

        issuer_curves.append(issuer_curve)

    ##########################################################################
    # Now determine the average spread of the index
    ##########################################################################

    cdsIndex = FinCDSIndexPortfolio()

    averageSpd3Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity3Y, issuer_curves) * 10000.0

    averageSpd5Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity5Y, issuer_curves) * 10000.0

    averageSpd7Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity7Y, issuer_curves) * 10000.0

    averageSpd10Y = cdsIndex.averageSpread(
        valuation_date, step_in_date, maturity10Y, issuer_curves) * 10000.0

    testCases.header("LABEL", "VALUE")
    testCases.print("AVERAGE SPD 3Y", averageSpd3Y)
    testCases.print("AVERAGE SPD 5Y", averageSpd5Y)
    testCases.print("AVERAGE SPD 7Y", averageSpd7Y)
    testCases.print("AVERAGE SPD 10Y", averageSpd10Y)
    testCases.banner(
        "===================================================================")

    ##########################################################################
    # Now determine the intrinsic spread of the index to the same maturity dates
    # As the single name CDS contracts
    ##########################################################################

    cdsIndex = FinCDSIndexPortfolio()

    intrinsicSpd3Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity3Y, issuer_curves) * 10000.0

    intrinsicSpd5Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity5Y, issuer_curves) * 10000.0

    intrinsicSpd7Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity7Y, issuer_curves) * 10000.0

    intrinsicSpd10Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity10Y, issuer_curves) * 10000.0

    ##########################################################################
    ##########################################################################

    testCases.header("LABEL", "VALUE")
    testCases.print("INTRINSIC SPD 3Y", intrinsicSpd3Y)
    testCases.print("INTRINSIC SPD 5Y", intrinsicSpd5Y)
    testCases.print("INTRINSIC SPD 7Y", intrinsicSpd7Y)
    testCases.print("INTRINSIC SPD 10Y", intrinsicSpd10Y)
    testCases.banner(
        "===================================================================")

    ##########################################################################
    ##########################################################################

    index_coupons = [0.002, 0.0037, 0.0050, 0.0063]
    indexUpfronts = [0.0, 0.0, 0.0, 0.0]

    indexMaturityDates = [
        Date(20, 12, 2009),
        Date(20, 12, 2011),
        Date(20, 12, 2013),
        Date(20, 12, 2016)
    ]

    indexRecoveryRate = 0.40

    tolerance = 1e-6

    import time
    start = time.time()

    indexPortfolio = FinCDSIndexPortfolio()
    adjustedIssuerCurves = indexPortfolio.hazardRateAdjustIntrinsic(
        valuation_date, issuer_curves, index_coupons, indexUpfronts,
        indexMaturityDates, indexRecoveryRate, tolerance)

    end = time.time()
    testCases.header("TIME")
    testCases.print(end - start)

    #    num_credits = len(issuer_curves)
    #    testCases.print("#","MATURITY","CDS_UNADJ","CDS_ADJ")
    #    for m in range(0,num_credits):
    #        for cds in cds_contracts:
    #            unadjustedSpread = cds.parSpread(valuation_date,issuer_curves[m])
    #            adjustedSpread = cds.parSpread(valuation_date,adjustedIssuerCurves[m])
    #            testCases.print(m,str(cds._maturity_date),"%10.3f"%(unadjustedSpread*10000),"%10.3f" %(adjustedSpread*10000))

    cdsIndex = FinCDSIndexPortfolio()

    intrinsicSpd3Y = cdsIndex.intrinsicSpread(valuation_date, step_in_date,
                                              indexMaturityDates[0],
                                              adjustedIssuerCurves) * 10000.0

    intrinsicSpd5Y = cdsIndex.intrinsicSpread(valuation_date, step_in_date,
                                              indexMaturityDates[1],
                                              adjustedIssuerCurves) * 10000.0

    intrinsicSpd7Y = cdsIndex.intrinsicSpread(valuation_date, step_in_date,
                                              indexMaturityDates[2],
                                              adjustedIssuerCurves) * 10000.0

    intrinsicSpd10Y = cdsIndex.intrinsicSpread(valuation_date, step_in_date,
                                               indexMaturityDates[3],
                                               adjustedIssuerCurves) * 10000.0

    # If the adjustment works then this should equal the index spreads
    testCases.header("LABEL", "VALUE")
    testCases.print("ADJUSTED INTRINSIC SPD 3Y", intrinsicSpd3Y)
    testCases.print("ADJUSTED INTRINSIC SPD 5Y", intrinsicSpd5Y)
    testCases.print("ADJUSTED INTRINSIC SPD 7Y", intrinsicSpd7Y)
    testCases.print("ADJUSTED INTRINSIC SPD 10Y", intrinsicSpd10Y)
def test_CDSIndexPortfolio():

    tradeDate = Date(1, 8, 2007)
    step_in_date = tradeDate.addDays(1)
    valuation_date = step_in_date

    libor_curve = buildIborCurve(tradeDate)

    maturity3Y = tradeDate.nextCDSDate(36)
    maturity5Y = tradeDate.nextCDSDate(60)
    maturity7Y = tradeDate.nextCDSDate(84)
    maturity10Y = tradeDate.nextCDSDate(120)

    path = os.path.join(os.path.dirname(__file__),
                        './/data//CDX_NA_IG_S7_SPREADS.csv')
    f = open(path, 'r')
    data = f.readlines()
    f.close()
    issuer_curves = []

    for row in data[1:]:

        splitRow = row.split(",")
        spd3Y = float(splitRow[1]) / 10000.0
        spd5Y = float(splitRow[2]) / 10000.0
        spd7Y = float(splitRow[3]) / 10000.0
        spd10Y = float(splitRow[4]) / 10000.0
        recovery_rate = float(splitRow[5])

        cds3Y = FinCDS(step_in_date, maturity3Y, spd3Y)
        cds5Y = FinCDS(step_in_date, maturity5Y, spd5Y)
        cds7Y = FinCDS(step_in_date, maturity7Y, spd7Y)
        cds10Y = FinCDS(step_in_date, maturity10Y, spd10Y)
        cds_contracts = [cds3Y, cds5Y, cds7Y, cds10Y]

        issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                   recovery_rate)

        issuer_curves.append(issuer_curve)

    ##########################################################################
    # Now determine the average spread of the index
    ##########################################################################

    cdsIndex = FinCDSIndexPortfolio()

    averageSpd3Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity3Y, issuer_curves) * 10000.0

    averageSpd5Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity5Y, issuer_curves) * 10000.0

    averageSpd7Y = cdsIndex.averageSpread(valuation_date, step_in_date,
                                          maturity7Y, issuer_curves) * 10000.0

    averageSpd10Y = cdsIndex.averageSpread(
        valuation_date, step_in_date, maturity10Y, issuer_curves) * 10000.0

    testCases.header("LABEL", "VALUE")
    testCases.print("AVERAGE SPD 3Y", averageSpd3Y)
    testCases.print("AVERAGE SPD 5Y", averageSpd5Y)
    testCases.print("AVERAGE SPD 7Y", averageSpd7Y)
    testCases.print("AVERAGE SPD 10Y", averageSpd10Y)

    ##########################################################################
    # Now determine the intrinsic spread of the index to the same maturity
    # dates. As the single name CDS contracts
    ##########################################################################

    cdsIndex = FinCDSIndexPortfolio()

    intrinsicSpd3Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity3Y, issuer_curves) * 10000.0

    intrinsicSpd5Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity5Y, issuer_curves) * 10000.0

    intrinsicSpd7Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity7Y, issuer_curves) * 10000.0

    intrinsicSpd10Y = cdsIndex.intrinsicSpread(
        valuation_date, step_in_date, maturity10Y, issuer_curves) * 10000.0

    ##########################################################################
    ##########################################################################

    testCases.header("LABEL", "VALUE")
    testCases.print("INTRINSIC SPD 3Y", intrinsicSpd3Y)
    testCases.print("INTRINSIC SPD 5Y", intrinsicSpd5Y)
    testCases.print("INTRINSIC SPD 7Y", intrinsicSpd7Y)
    testCases.print("INTRINSIC SPD 10Y", intrinsicSpd10Y)
def buildFullIssuerCurve(valuation_date):

    dcType = DayCountTypes.ACT_360
    depos = []
    irBump = 0.0

    m = 1.0  # 0.00000000000

    spotDays = 0
    settlement_date = valuation_date.addDays(spotDays)

    maturity_date = settlement_date.addMonths(1)
    depo1 = FinIborDeposit(settlement_date, maturity_date, m * 0.0016, dcType)

    maturity_date = settlement_date.addMonths(2)
    depo2 = FinIborDeposit(settlement_date, maturity_date, m * 0.0020, dcType)

    maturity_date = settlement_date.addMonths(3)
    depo3 = FinIborDeposit(settlement_date, maturity_date, m * 0.0024, dcType)

    maturity_date = settlement_date.addMonths(6)
    depo4 = FinIborDeposit(settlement_date, maturity_date, m * 0.0033, dcType)

    maturity_date = settlement_date.addMonths(12)
    depo5 = FinIborDeposit(settlement_date, maturity_date, m * 0.0056, dcType)

    depos.append(depo1)
    depos.append(depo2)
    depos.append(depo3)
    depos.append(depo4)
    depos.append(depo5)

    fras = []

    spotDays = 2
    settlement_date = valuation_date.addDays(spotDays)

    swaps = []
    dcType = DayCountTypes.THIRTY_E_360_ISDA
    fixedFreq = FrequencyTypes.SEMI_ANNUAL

    maturity_date = settlement_date.addMonths(24)
    swap1 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0044 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap1)

    maturity_date = settlement_date.addMonths(36)
    swap2 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0078 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap2)

    maturity_date = settlement_date.addMonths(48)
    swap3 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0119 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap3)

    maturity_date = settlement_date.addMonths(60)
    swap4 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0158 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap4)

    maturity_date = settlement_date.addMonths(72)
    swap5 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0192 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap5)

    maturity_date = settlement_date.addMonths(84)
    swap6 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0219 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap6)

    maturity_date = settlement_date.addMonths(96)
    swap7 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0242 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap7)

    maturity_date = settlement_date.addMonths(108)
    swap8 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0261 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap8)

    maturity_date = settlement_date.addMonths(120)
    swap9 = FinIborSwap(
        settlement_date,
        maturity_date,
        FinSwapTypes.PAY,
        m * 0.0276 + irBump,
        fixedFreq,
        dcType)
    swaps.append(swap9)

    libor_curve = IborSingleCurve(valuation_date, depos, fras, swaps)

    cdsMarketContracts = []
    cdsCoupon = 0.005743
    maturity_date = valuation_date.nextCDSDate(6)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.007497
    maturity_date = valuation_date.nextCDSDate(12)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.011132
    maturity_date = valuation_date.nextCDSDate(24)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.013932
    maturity_date = valuation_date.nextCDSDate(36)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.015764
    maturity_date = valuation_date.nextCDSDate(48)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.017366
    maturity_date = valuation_date.nextCDSDate(60)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.020928
    maturity_date = valuation_date.nextCDSDate(84)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    cdsCoupon = 0.022835
    maturity_date = valuation_date.nextCDSDate(120)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    recovery_rate = 0.40

    issuer_curve = FinCDSCurve(valuation_date,
                              cdsMarketContracts,
                              libor_curve,
                              recovery_rate)

    return libor_curve, issuer_curve
def test_full_priceCDSwaption():

    # This reproduces example on page 38 of Open Gamma note on CDS Option
    tradeDate = Date(5, 2, 2014)
    _, issuer_curve = buildFullIssuerCurve(tradeDate)
    step_in_date = tradeDate.addDays(1)
    valuation_date = step_in_date
    expiry_date = Date(20, 3, 2014)
    maturity_date = Date(20, 6, 2019)

    cdsRecovery = 0.40
    notional = 100.0
    long_protection = False
    cdsCoupon = 0.0  # NOT KNOWN

    cds_contract = FinCDS(step_in_date,
                         maturity_date,
                         cdsCoupon,
                         notional,
                         long_protection)

    testCases.banner(
        "=============================== CDS ===============================")
#    cds_contract.print(valuation_date)

    testCases.header("LABEL", "VALUE")
    spd = cds_contract.parSpread(
        valuation_date,
        issuer_curve,
        cdsRecovery) * 10000.0
    testCases.print("PAR SPREAD:", spd)

    v = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("FULL VALUE", v['full_pv'])
    testCases.print("CLEAN VALUE", v['clean_pv'])

    p = cds_contract.clean_price(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("CLEAN PRICE", p)

    accrued_days = cds_contract.accrued_days()
    testCases.print("ACCRUED DAYS", accrued_days)

    accruedInterest = cds_contract.accruedInterest()
    testCases.print("ACCRUED COUPON", accruedInterest)

    prot_pv = cds_contract.protectionLegPV(
        valuation_date, issuer_curve, cdsRecovery)
    testCases.print("PROTECTION LEG PV", prot_pv)

    premPV = cds_contract.premiumLegPV(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("PREMIUM LEG PV", premPV)

    fullRPV01, cleanRPV01 = cds_contract.riskyPV01(valuation_date, issuer_curve)
    testCases.print("FULL  RPV01", fullRPV01)
    testCases.print("CLEAN RPV01", cleanRPV01)

#    cds_contract.printFlows(issuer_curve)

    testCases.banner(
        "=========================== FORWARD CDS ===========================")

    cds_contract = FinCDS(expiry_date,
                         maturity_date,
                         cdsCoupon,
                         notional,
                         long_protection)

#    cds_contract.print(valuation_date)

    spd = cds_contract.parSpread(
        valuation_date,
        issuer_curve,
        cdsRecovery) * 10000.0
    testCases.print("PAR SPREAD", spd)

    v = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("FULL VALUE", v['full_pv'])
    testCases.print("CLEAN VALUE", v['clean_pv'])

    prot_pv = cds_contract.protectionLegPV(
        valuation_date, issuer_curve, cdsRecovery)
    testCases.print("PROTECTION LEG PV", prot_pv)

    premPV = cds_contract.premiumLegPV(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("PREMIUM LEG PV", premPV)

    fullRPV01, cleanRPV01 = cds_contract.riskyPV01(valuation_date, issuer_curve)
    testCases.print("FULL  RPV01", fullRPV01)
    testCases.print("CLEAN RPV01", cleanRPV01)

#    cds_contract.printFlows(issuer_curve)

    testCases.banner(
        "========================== CDS OPTIONS ============================")

    cdsCoupon = 0.01
    volatility = 0.3
    testCases.print("Expiry Date:", str(expiry_date))
    testCases.print("Maturity Date:", str(maturity_date))
    testCases.print("CDS Coupon:", cdsCoupon)

    testCases.header("STRIKE", "FULL VALUE", "IMPLIED VOL")

    for strike in np.linspace(100, 300, 41):

        cdsOption = FinCDSOption(expiry_date,
                                 maturity_date,
                                 strike / 10000.0,
                                 notional)

        v = cdsOption.value(valuation_date,
                            issuer_curve,
                            volatility)

        vol = cdsOption.impliedVolatility(valuation_date,
                                          issuer_curve,
                                          v)

        testCases.print(strike, v, vol)
Example #15
0
def test_FinCDSCurve():

    curveDate = Date(20, 12, 2018)

    swaps = []
    depos = []
    fras = []

    fixedDCC = DayCountTypes.ACT_365F
    fixedFreq = FrequencyTypes.SEMI_ANNUAL
    fixedCoupon = 0.05

    for i in range(1, 11):

        maturity_date = curveDate.addMonths(12 * i)
        swap = FinIborSwap(curveDate, maturity_date, FinSwapTypes.PAY,
                           fixedCoupon, fixedFreq, fixedDCC)
        swaps.append(swap)

    libor_curve = IborSingleCurve(curveDate, depos, fras, swaps)

    cds_contracts = []

    for i in range(1, 11):
        maturity_date = curveDate.addMonths(12 * i)
        cds = FinCDS(curveDate, maturity_date, 0.005 + 0.001 * (i - 1))
        cds_contracts.append(cds)

    issuer_curve = FinCDSCurve(curveDate,
                               cds_contracts,
                               libor_curve,
                               recovery_rate=0.40,
                               useCache=False)

    testCases.header("T", "Q")
    n = len(issuer_curve._times)
    for i in range(0, n):
        testCases.print(issuer_curve._times[i], issuer_curve._values[i])

    testCases.header("CONTRACT", "VALUE")
    for i in range(1, 11):
        maturity_date = curveDate.addMonths(12 * i)
        cds = FinCDS(curveDate, maturity_date, 0.005 + 0.001 * (i - 1))
        v = cds.value(curveDate, issuer_curve)
        testCases.print(i, v)

    if 1 == 0:
        x = [0.0, 1.2, 1.6, 1.7, 10.0]
        qs = issuer_curve.survProb(x)
        print("===>", qs)

        x = [0.3, 1.2, 1.6, 1.7, 10.0]
        xx = np.array(x)
        qs = issuer_curve.survProb(xx)
        print("===>", qs)

        x = [0.3, 1.2, 1.6, 1.7, 10.0]
        dfs = issuer_curve.df(x)
        print("===>", dfs)

        x = [0.3, 1.2, 1.6, 1.7, 10.0]
        xx = np.array(x)
        dfs = issuer_curve.df(xx)
        print("===>", dfs)
Example #16
0
def test_full_priceCDSModelCheck():

    testCases.print("Example", "MARKIT CHECK 19 Aug 2020")

    libor_curve, issuer_curve = buildFullIssuerCurve2(0.0, 0.0)

    # This is the 10 year contract at an off market coupon
    maturity_date = Date(20, 6, 2025)
    cdsCoupon = 0.050
    notional = ONE_MILLION
    long_protection = True
    tradeDate = Date(20, 8, 2020)
    effective_date = Date(21, 8, 2020)
    valuation_date = tradeDate

    cds_contract = FinCDS(effective_date, maturity_date, cdsCoupon, notional,
                          long_protection)

    cdsRecovery = 0.40

    testCases.header("LABEL", "VALUE")
    spd = cds_contract.parSpread(valuation_date, issuer_curve,
                                 cdsRecovery) * 10000.0
    testCases.print("PAR_SPREAD", spd)

    v = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("FULL_VALUE", v['full_pv'])
    testCases.print("CLEAN_VALUE", v['clean_pv'])

    p = cds_contract.clean_price(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("CLEAN_PRICE", p)

    accrued_days = cds_contract.accrued_days()
    testCases.print("ACCRUED_DAYS", accrued_days)

    accruedInterest = cds_contract.accruedInterest()
    testCases.print("ACCRUED_COUPON", accruedInterest)

    prot_pv = cds_contract.protectionLegPV(valuation_date, issuer_curve,
                                           cdsRecovery)
    testCases.print("PROTECTION_PV", prot_pv)

    premPV = cds_contract.premiumLegPV(valuation_date, issuer_curve,
                                       cdsRecovery)
    testCases.print("PREMIUM_PV", premPV)

    rpv01 = cds_contract.riskyPV01(valuation_date, issuer_curve)
    testCases.print("FULL_RPV01", rpv01['full_rpv01'])
    testCases.print("CLEAN_RPV01", rpv01['clean_rpv01'])

    creditDV01 = cds_contract.creditDV01(valuation_date, issuer_curve,
                                         cdsRecovery)
    testCases.print("CREDIT DV01", creditDV01)

    interestDV01 = cds_contract.interestDV01(valuation_date, issuer_curve,
                                             cdsRecovery)
    testCases.print("INTEREST DV01", interestDV01)

    # Consider fast approximation
    t = (maturity_date - valuation_date) / gDaysInYear
    z = libor_curve.df(maturity_date)
    r = -np.log(z) / t

    mktSpread = 0.01
    v_approx = cds_contract.valueFastApprox(valuation_date, r, mktSpread,
                                            cdsRecovery)

    testCases.header("FAST VALUATIONS", "VALUE")

    testCases.print("FULL APPROX VALUE", v_approx[0])
    testCases.print("CLEAN APPROX VALUE", v_approx[1])
    testCases.print("APPROX CREDIT DV01", v_approx[2])
    testCases.print("APPROX INTEREST DV01", v_approx[3])
Example #17
0
def test_full_priceCDSIndexOption():

    tradeDate = Date(1, 8, 2007)
    step_in_date = tradeDate.addDays(1)
    valuation_date = step_in_date

    libor_curve = buildIborCurve(tradeDate)

    maturity3Y = tradeDate.nextCDSDate(36)
    maturity5Y = tradeDate.nextCDSDate(60)
    maturity7Y = tradeDate.nextCDSDate(84)
    maturity10Y = tradeDate.nextCDSDate(120)

    path = os.path.join(os.path.dirname(__file__),
                        './/data//CDX_NA_IG_S7_SPREADS.csv')
    f = open(path, 'r')
    data = f.readlines()
    f.close()
    issuer_curves = []

    for row in data[1:]:

        splitRow = row.split(",")
        creditName = splitRow[0]
        spd3Y = float(splitRow[1]) / 10000.0
        spd5Y = float(splitRow[2]) / 10000.0
        spd7Y = float(splitRow[3]) / 10000.0
        spd10Y = float(splitRow[4]) / 10000.0
        recovery_rate = float(splitRow[5])

        cds3Y = FinCDS(step_in_date, maturity3Y, spd3Y)
        cds5Y = FinCDS(step_in_date, maturity5Y, spd5Y)
        cds7Y = FinCDS(step_in_date, maturity7Y, spd7Y)
        cds10Y = FinCDS(step_in_date, maturity10Y, spd10Y)
        cds_contracts = [cds3Y, cds5Y, cds7Y, cds10Y]

        issuer_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                   recovery_rate)

        issuer_curves.append(issuer_curve)

    ##########################################################################
    ##########################################################################

    indexUpfronts = [0.0, 0.0, 0.0, 0.0]
    indexMaturityDates = [
        Date(20, 12, 2009),
        Date(20, 12, 2011),
        Date(20, 12, 2013),
        Date(20, 12, 2016)
    ]
    indexRecovery = 0.40

    testCases.banner(
        "======================= CDS INDEX OPTION ==========================")

    index_coupon = 0.004
    volatility = 0.50
    expiry_date = Date(1, 2, 2008)
    maturity_date = Date(20, 12, 2011)
    notional = 10000.0
    tolerance = 1e-6

    testCases.header("TIME", "STRIKE", "INDEX", "PAY", "RECEIVER", "G(K)", "X",
                     "EXPH", "ABPAY", "ABREC")

    for index in np.linspace(20, 60, 10):

        #######################################################################

        cds_contracts = []
        for dt in indexMaturityDates:
            cds = FinCDS(valuation_date, dt, index / 10000.0)
            cds_contracts.append(cds)

        index_curve = FinCDSCurve(valuation_date, cds_contracts, libor_curve,
                                  indexRecovery)

        if 1 == 1:

            indexSpreads = [index / 10000.0] * 4

            indexPortfolio = FinCDSIndexPortfolio()
            adjustedIssuerCurves = indexPortfolio.hazardRateAdjustIntrinsic(
                valuation_date, issuer_curves, indexSpreads, indexUpfronts,
                indexMaturityDates, indexRecovery, tolerance)
        else:

            indexSpread = index / 10000.0
            issuer_curve = buildFlatIssuerCurve(tradeDate, libor_curve,
                                                indexSpread, indexRecovery)

            adjustedIssuerCurves = []
            for iCredit in range(0, 125):
                adjustedIssuerCurves.append(issuer_curve)

        #######################################################################

        for strike in np.linspace(20, 60, 20):

            start = time.time()

            option = FinCDSIndexOption(expiry_date, maturity_date,
                                       index_coupon, strike / 10000.0,
                                       notional)

            v_pay_1, v_rec_1, strikeValue, mu, expH = option.valueAnderson(
                valuation_date, adjustedIssuerCurves, indexRecovery,
                volatility)
            end = time.time()
            elapsed = end - start

            end = time.time()

            v_pay_2, v_rec_2 = option.valueAdjustedBlack(
                valuation_date, index_curve, indexRecovery, libor_curve,
                volatility)

            elapsed = end - start

            testCases.print(elapsed, strike, index, v_pay_1, v_rec_1,
                            strikeValue, mu, expH, v_pay_2, v_rec_2)
Example #18
0
def test_full_priceCDS1():

    mktSpread = 0.040

    testCases.header("Example", "Markit 9 Aug 2019")

    libor_curve, issuer_curve = buildFullIssuerCurve1(0.0, 0.0)

    # This is the 10 year contract at an off market coupon
    maturity_date = Date(20, 6, 2029)
    cdsCoupon = 0.0150
    notional = ONE_MILLION
    long_protection = True
    tradeDate = Date(9, 8, 2019)
    valuation_date = tradeDate.addDays(1)
    effective_date = valuation_date

    cds_contract = FinCDS(effective_date, maturity_date, cdsCoupon, notional,
                          long_protection)

    cdsRecovery = 0.40

    testCases.header("LABEL", "VALUE")
    spd = cds_contract.parSpread(valuation_date, issuer_curve,
                                 cdsRecovery) * 10000.0
    testCases.print("PAR_SPREAD", spd)

    v = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("FULL_VALUE", v['full_pv'])
    testCases.print("CLEAN_VALUE", v['clean_pv'])

    p = cds_contract.clean_price(valuation_date, issuer_curve, cdsRecovery)
    testCases.print("CLEAN_PRICE", p)

    # MARKIT PRICE IS 168517

    accrued_days = cds_contract.accrued_days()
    testCases.print("ACCRUED_DAYS", accrued_days)

    accruedInterest = cds_contract.accruedInterest()
    testCases.print("ACCRUED_COUPON", accruedInterest)

    prot_pv = cds_contract.protectionLegPV(valuation_date, issuer_curve,
                                           cdsRecovery)
    testCases.print("PROTECTION_PV", prot_pv)

    premPV = cds_contract.premiumLegPV(valuation_date, issuer_curve,
                                       cdsRecovery)
    testCases.print("PREMIUM_PV", premPV)

    fullRPV01, cleanRPV01 = cds_contract.riskyPV01(valuation_date,
                                                   issuer_curve)
    testCases.print("FULL_RPV01", fullRPV01)
    testCases.print("CLEAN_RPV01", cleanRPV01)

    # cds_contract.printFlows(issuer_curve)

    bump = 1.0 / 10000.0  # 1 bp

    libor_curve, issuer_curve = buildFullIssuerCurve1(bump, 0)
    v_bump = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    dv = v_bump['full_pv'] - v['full_pv']
    testCases.print("CREDIT_DV01", dv)

    # Interest Rate Bump
    libor_curve, issuer_curve = buildFullIssuerCurve1(0, bump)
    v_bump = cds_contract.value(valuation_date, issuer_curve, cdsRecovery)
    dv = v_bump['full_pv'] - v['full_pv']
    testCases.print("INTEREST_DV01", dv)

    t = (maturity_date - valuation_date) / gDaysInYear
    z = libor_curve.df(maturity_date)
    r = -np.log(z) / t

    v_approx = cds_contract.valueFastApprox(valuation_date, r, mktSpread,
                                            cdsRecovery)

    testCases.print("FULL APPROX VALUE", v_approx[0])
    testCases.print("CLEAN APPROX VALUE", v_approx[1])
    testCases.print("APPROX CREDIT DV01", v_approx[2])
    testCases.print("APPROX INTEREST DV01", v_approx[3])
Example #19
0
def buildFullIssuerCurve1(mktSpreadBump, irBump):

    # https://www.markit.com/markit.jsp?jsppage=pv.jsp
    # YIELD CURVE 8-AUG-2019 SNAP AT 1600

    tradeDate = Date(9, 8, 2019)
    valuation_date = tradeDate.addDays(1)

    m = 1.0  # 0.00000000000

    dcType = DayCountTypes.ACT_360
    depos = []
    depo1 = FinIborDeposit(valuation_date, "1D", m * 0.0220, dcType)
    depos.append(depo1)

    spotDays = 2
    settlement_date = valuation_date.addDays(spotDays)

    maturity_date = settlement_date.addMonths(1)
    depo1 = FinIborDeposit(settlement_date, maturity_date, m * 0.022009,
                           dcType)

    maturity_date = settlement_date.addMonths(2)
    depo2 = FinIborDeposit(settlement_date, maturity_date, m * 0.022138,
                           dcType)

    maturity_date = settlement_date.addMonths(3)
    depo3 = FinIborDeposit(settlement_date, maturity_date, m * 0.021810,
                           dcType)

    maturity_date = settlement_date.addMonths(6)
    depo4 = FinIborDeposit(settlement_date, maturity_date, m * 0.020503,
                           dcType)

    maturity_date = settlement_date.addMonths(12)
    depo5 = FinIborDeposit(settlement_date, maturity_date, m * 0.019930,
                           dcType)

    depos.append(depo1)
    depos.append(depo2)
    depos.append(depo3)
    depos.append(depo4)
    depos.append(depo5)

    fras = []

    swaps = []
    dcType = DayCountTypes.THIRTY_E_360_ISDA
    fixedFreq = FrequencyTypes.SEMI_ANNUAL

    maturity_date = settlement_date.addMonths(24)
    swap1 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.015910 + irBump, fixedFreq, dcType)
    swaps.append(swap1)

    maturity_date = settlement_date.addMonths(36)
    swap2 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.014990 + irBump, fixedFreq, dcType)
    swaps.append(swap2)

    maturity_date = settlement_date.addMonths(48)
    swap3 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.014725 + irBump, fixedFreq, dcType)
    swaps.append(swap3)

    maturity_date = settlement_date.addMonths(60)
    swap4 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.014640 + irBump, fixedFreq, dcType)
    swaps.append(swap4)

    maturity_date = settlement_date.addMonths(72)
    swap5 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.014800 + irBump, fixedFreq, dcType)
    swaps.append(swap5)

    maturity_date = settlement_date.addMonths(84)
    swap6 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.014995 + irBump, fixedFreq, dcType)
    swaps.append(swap6)

    maturity_date = settlement_date.addMonths(96)
    swap7 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.015180 + irBump, fixedFreq, dcType)
    swaps.append(swap7)

    maturity_date = settlement_date.addMonths(108)
    swap8 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.015610 + irBump, fixedFreq, dcType)
    swaps.append(swap8)

    maturity_date = settlement_date.addMonths(120)
    swap9 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                        m * 0.015880 + irBump, fixedFreq, dcType)
    swaps.append(swap9)

    maturity_date = settlement_date.addMonths(144)
    swap10 = FinIborSwap(settlement_date, maturity_date, FinSwapTypes.PAY,
                         m * 0.016430 + irBump, fixedFreq, dcType)
    swaps.append(swap10)

    libor_curve = IborSingleCurve(valuation_date, depos, fras, swaps)

    cdsMarketContracts = []

    cdsCoupon = 0.04 + mktSpreadBump

    maturity_date = valuation_date.nextCDSDate(6)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(12)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(24)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(36)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(48)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(60)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(84)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(120)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    maturity_date = valuation_date.nextCDSDate(180)
    cds = FinCDS(valuation_date, maturity_date, cdsCoupon)
    cdsMarketContracts.append(cds)

    recovery_rate = 0.40

    issuer_curve = FinCDSCurve(valuation_date, cdsMarketContracts, libor_curve,
                               recovery_rate)

    return libor_curve, issuer_curve