filter = Filter()

    # choose run_example = 0 for everything
    # run_example = 1 - get holidays for FX, EUR and EURUSD, as well as listing weekends
    # run_example = 2 - get FX delivery dates and FX option expiries for various tenors
    # run_example = 3 - get number of days between pandas DatetimeIndex
    # run_example = 4 - filter time series by EURUSD holidays

    run_example = 0

    if run_example == 1 or run_example == 0:

        # Get the holidays (which aren't weekends)
        print(
            calendar.get_holidays(start_date='01 Jan 1999 00:50',
                                  end_date='31 Dec 1999',
                                  cal='FX'))
        print(
            calendar.get_holidays(start_date='01 Jan 2000 00:10',
                                  end_date='31 Dec 2000',
                                  cal='EUR'))
        print(
            calendar.get_holidays(start_date='01 Jan 2000 00:10',
                                  end_date='31 Dec 2000',
                                  cal='EURUSD'))

        # Get the holidays (which are weekends)
        print(
            calendar.get_holidays(start_date='01 Jan 1999 00:50',
                                  end_date='31 Dec 1999',
                                  cal='WKY'))
Example #2
0
class FXForwardsCurve(object):
    """Constructs continuous forwards time series total return indices from underlying forwards contracts.


    """

    def __init__(self, market_data_generator=None, fx_forwards_trading_tenor=market_constants.fx_forwards_trading_tenor,
                 roll_days_before=market_constants.fx_forwards_roll_days_before,
                 roll_event=market_constants.fx_forwards_roll_event, construct_via_currency='no',
                 fx_forwards_tenor_for_interpolation=market_constants.fx_forwards_tenor_for_interpolation,
                 base_depos_tenor=data_constants.base_depos_tenor,
                 roll_months=market_constants.fx_forwards_roll_months,
                 cum_index=market_constants.fx_forwards_cum_index,
                 output_calculation_fields=market_constants.output_calculation_fields):
        """Initializes FXForwardsCurve

        Parameters
        ----------
        market_data_generator : MarketDataGenerator
            Used for downloading market data

        fx_forwards_trading_tenor : str
            What is primary forward contract being used to trade (default - '1M')

        roll_days_before : int
            Number of days before roll event to enter into a new forwards contract

        roll_event : str
            What constitutes a roll event? ('month-end', 'quarter-end', 'year-end', 'expiry')

        construct_via_currency : str
            What currency should we construct the forward via? Eg. if we asked for AUDJPY we can construct it via
            AUDUSD & JPYUSD forwards, as opposed to AUDJPY forwards (default - 'no')

        fx_forwards_tenor_for_interpolation : str(list)
            Which forwards should we use for interpolation

        base_depos_tenor : str(list)
            Which base deposits tenors do we need (this is only necessary if we want to start inferring depos)

        roll_months : int
            After how many months should we initiate a roll. Typically for trading 1M this should 1, 3M this should be 3
            etc.

        cum_index : str
            In total return index, do we compute in additive or multiplicative way ('add' or 'mult')

        output_calculation_fields : bool
            Also output additional data should forward expiries etc. alongside total returns indices
        """

        self._market_data_generator = market_data_generator
        self._calculations = Calculations()
        self._calendar = Calendar()
        self._filter = Filter()

        self._fx_forwards_trading_tenor = fx_forwards_trading_tenor
        self._roll_days_before = roll_days_before
        self._roll_event = roll_event

        self._construct_via_currency = construct_via_currency
        self._fx_forwards_tenor_for_interpolation = fx_forwards_tenor_for_interpolation
        self._base_depos_tenor = base_depos_tenor

        self._roll_months = roll_months
        self._cum_index = cum_index
        self._output_calcultion_fields = output_calculation_fields

    def generate_key(self):
        from findatapy.market.ioengine import SpeedCache

        # Don't include any "large" objects in the key
        return SpeedCache().generate_key(self, ['_market_data_generator', '_calculations', '_calendar', '_filter'])

    def fetch_continuous_time_series(self, md_request, market_data_generator, fx_forwards_trading_tenor=None,
                                     roll_days_before=None, roll_event=None,
                                     construct_via_currency=None, fx_forwards_tenor_for_interpolation=None, base_depos_tenor=None,
                                     roll_months=None, cum_index=None, output_calculation_fields=False):

        if market_data_generator is None: market_data_generator = self._market_data_generator
        if fx_forwards_trading_tenor is None: fx_forwards_trading_tenor = self._fx_forwards_trading_tenor
        if roll_days_before is None: roll_days_before = self._roll_days_before
        if roll_event is None: roll_event = self._roll_event
        if construct_via_currency is None: construct_via_currency = self._construct_via_currency
        if fx_forwards_tenor_for_interpolation is None: fx_forwards_tenor_for_interpolation = self._fx_forwards_tenor_for_interpolation
        if base_depos_tenor is None: base_depos_tenor = self._base_depos_tenor
        if roll_months is None: roll_months = self._roll_months
        if cum_index is None: cum_index = self._cum_index
        if output_calculation_fields is None: output_calculation_fields

        # Eg. we construct EURJPY via EURJPY directly (note: would need to have sufficient forward data for this)
        if construct_via_currency == 'no':
            # Download FX spot, FX forwards points and base depos etc.
            market = Market(market_data_generator=market_data_generator)

            md_request_download = MarketDataRequest(md_request=md_request)

            fx_conv = FXConv()

            # CAREFUL: convert the tickers to correct notation, eg. USDEUR => EURUSD, because our data
            # should be fetched in correct convention
            md_request_download.tickers = [fx_conv.correct_notation(x) for x in md_request.tickers]
            md_request_download.category = 'fx-forwards-market'
            md_request_download.fields = 'close'
            md_request_download.abstract_curve = None
            md_request_download.fx_forwards_tenor = fx_forwards_tenor_for_interpolation
            md_request_download.base_depos_tenor = base_depos_tenor

            forwards_market_df = market.fetch_market(md_request_download)

            # Now use the original tickers
            return self.construct_total_return_index(md_request.tickers, forwards_market_df,
                                                     fx_forwards_trading_tenor=fx_forwards_trading_tenor,
                                                     roll_days_before=roll_days_before, roll_event=roll_event,
                                                     fx_forwards_tenor_for_interpolation=fx_forwards_tenor_for_interpolation,
                                                     roll_months=roll_months,
                                                     cum_index=cum_index,
                                                     output_calculation_fields=output_calculation_fields)
        else:
            # eg. we calculate via your domestic currency such as USD, so returns will be in your domestic currency
            # Hence AUDJPY would be calculated via AUDUSD and JPYUSD (subtracting the difference in returns)
            total_return_indices = []

            for tick in md_request.tickers:
                base = tick[0:3]
                terms = tick[3:6]

                md_request_base = MarketDataRequest(md_request=md_request)
                md_request_base.tickers = base + construct_via_currency

                md_request_terms = MarketDataRequest(md_request=md_request)
                md_request_terms.tickers = terms + construct_via_currency

                # Construct the base and terms separately (ie. AUDJPY => AUDUSD & JPYUSD)
                base_vals = self.fetch_continuous_time_series(md_request_base, market_data_generator,
                                     fx_forwards_trading_tenor=fx_forwards_trading_tenor,
                                     roll_days_before=roll_days_before, roll_event=roll_event,
                                     fx_forwards_tenor_for_interpolation=fx_forwards_tenor_for_interpolation,
                                     base_depos_tenor=base_depos_tenor,
                                     roll_months=roll_months, output_calculation_fields=False,
                                     cum_index=cum_index,
                                     construct_via_currency='no')

                terms_vals = self.fetch_continuous_time_series(md_request_terms, market_data_generator,
                                     fx_forwards_trading_tenor=fx_forwards_trading_tenor,
                                     roll_days_before=roll_days_before, roll_event=roll_event,
                                     fx_forwards_tenor_for_interpolation=fx_forwards_tenor_for_interpolation,
                                     base_depos_tenor=base_depos_tenor,
                                     roll_months=roll_months,
                                     cum_index=cum_index,
                                     output_calculation_fields=False,
                                     construct_via_currency='no')

                # Special case for USDUSD case (and if base or terms USD are USDUSD
                if base + terms == construct_via_currency + construct_via_currency:
                    base_rets = self._calculations.calculate_returns(base_vals)
                    cross_rets = pd.DataFrame(0, index=base_rets.index, columns=base_rets.columns)
                elif base + construct_via_currency == construct_via_currency + construct_via_currency:
                    cross_rets = -self._calculations.calculate_returns(terms_vals)
                elif terms + construct_via_currency == construct_via_currency + construct_via_currency:
                    cross_rets = self._calculations.calculate_returns(base_vals)
                else:
                    base_rets = self._calculations.calculate_returns(base_vals)
                    terms_rets = self._calculations.calculate_returns(terms_vals)

                    cross_rets = base_rets.sub(terms_rets.iloc[:, 0], axis=0)

                # First returns of a time series will by NaN, given we don't know previous point
                cross_rets.iloc[0] = 0

                cross_vals = self._calculations.create_mult_index(cross_rets)
                cross_vals.columns = [tick + '-forward-tot.close']

                total_return_indices.append(cross_vals)

            return self._calculations.pandas_outer_join(total_return_indices)

    def unhedged_asset_fx(self, assets_df, asset_currency, home_curr, start_date, finish_date, spot_df=None):
        pass

    def hedged_asset_fx(self, assets_df, asset_currency, home_curr, start_date, finish_date, spot_df=None,
                        total_return_indices_df=None):
        pass

    def get_day_count_conv(self, currency):
        if currency in market_constants.currencies_with_365_basis:
            return 365.0

        return 360.0

    def construct_total_return_index(self, cross_fx, forwards_market_df,
                                     fx_forwards_trading_tenor=None,
                                     roll_days_before=None,
                                     roll_event=None,
                                     roll_months=None,
                                     fx_forwards_tenor_for_interpolation=None,
                                     cum_index=None,
                                     output_calculation_fields=False):

        if not (isinstance(cross_fx, list)):
            cross_fx = [cross_fx]

        if fx_forwards_trading_tenor is None: fx_forwards_trading_tenor = self._fx_forwards_trading_tenor
        if roll_days_before is None: roll_days_before = self._roll_days_before
        if roll_event is None: roll_event = self._roll_event
        if roll_months is None: roll_months = self._roll_months
        if fx_forwards_tenor_for_interpolation is None: fx_forwards_tenor_for_interpolation = self._fx_forwards_tenor_for_interpolation
        if cum_index is None: cum_index = self._cum_index

        total_return_index_df_agg = []

        # Remove columns where there is no data (because these points typically aren't quoted)
        forwards_market_df = forwards_market_df.dropna(how='all', axis=1)

        fx_forwards_pricer = FXForwardsPricer()

        def get_roll_date(horizon_d, delivery_d, asset_hols, month_adj=1):
            if roll_event == 'month-end':
                roll_d = horizon_d + CustomBusinessMonthEnd(roll_months + month_adj, holidays=asset_hols)
            elif roll_event == 'delivery-date':
                roll_d = delivery_d

            return (roll_d - CustomBusinessDay(n=roll_days_before, holidays=asset_hols))

        for cross in cross_fx:

            # Eg. if we specify USDUSD
            if cross[0:3] == cross[3:6]:
                total_return_index_df_agg.append(
                    pd.DataFrame(100, index=forwards_market_df.index, columns=[cross + "-forward-tot.close"]))
            else:
                # Is the FX cross in the correct convention
                old_cross = cross
                cross = FXConv().correct_notation(cross)

                horizon_date = forwards_market_df.index

                delivery_date = []
                roll_date = []

                new_trade = np.full(len(horizon_date), False, dtype=bool)

                asset_holidays = self._calendar.get_holidays(cal=cross)

                # Get first delivery date
                delivery_date.append(
                    self._calendar.get_delivery_date_from_horizon_date(horizon_date[0],
                                                                       fx_forwards_trading_tenor, cal=cross, asset_class='fx')[0])

                # For first month want it to expire within that month (for consistency), hence month_adj=0 ONLY here
                roll_date.append(get_roll_date(horizon_date[0], delivery_date[0], asset_holidays, month_adj=0))

                # New trade => entry at beginning AND on every roll
                new_trade[0] = True

                # Get all the delivery dates and roll dates
                # At each "roll/trade" day we need to reset them for the new contract
                for i in range(1, len(horizon_date)):

                    # If the horizon date has reached the roll date (from yesterday), we're done, and we have a
                    # new roll/trade
                    if (horizon_date[i] - roll_date[i-1]).days == 0:
                        new_trade[i] = True
                    # else:
                    #    new_trade[i] = False

                    # If we're entering a new trade/contract, we need to get new delivery and roll dates
                    if new_trade[i]:
                        delivery_date.append(self._calendar.get_delivery_date_from_horizon_date(horizon_date[i],
                            fx_forwards_trading_tenor, cal=cross, asset_class='fx')[0])

                        roll_date.append(get_roll_date(horizon_date[i], delivery_date[i], asset_holidays))
                    else:
                        # Otherwise use previous delivery and roll dates, because we're still holding same contract
                        delivery_date.append(delivery_date[i-1])
                        roll_date.append(roll_date[i-1])

                interpolated_forward = fx_forwards_pricer.price_instrument(cross, horizon_date, delivery_date, market_df=forwards_market_df,
                         fx_forwards_tenor_for_interpolation=fx_forwards_tenor_for_interpolation)[cross + '-interpolated-outright-forward.close'].values

                # To record MTM prices
                mtm = np.copy(interpolated_forward)

                # Note: may need to add discount factor when marking to market forwards?

                # Special case: for very first trading day
                # mtm[0] = interpolated_forward[0]

                # On rolling dates, MTM will be the previous forward contract (interpolated)
                # otherwise it will be the current forward contract
                for i in range(1, len(horizon_date)):
                    if new_trade[i]:
                        mtm[i] = fx_forwards_pricer.price_instrument(cross, horizon_date[i], delivery_date[i-1],
                            market_df=forwards_market_df,
                            fx_forwards_tenor_for_interpolation=fx_forwards_tenor_for_interpolation) \
                                [cross + '-interpolated-outright-forward.close'].values
                    # else:
                    #    mtm[i] = interpolated_forward[i]

                # Eg. if we asked for USDEUR, we first constructed spot/forwards for EURUSD
                # and then need to invert it
                if old_cross != cross:
                    mtm = 1.0 / mtm
                    interpolated_forward = 1.0 / interpolated_forward

                forward_rets = mtm / np.roll(interpolated_forward, 1) - 1.0
                forward_rets[0] = 0

                if cum_index == 'mult':
                    cum_rets = 100 * np.cumprod(1.0 + forward_rets)
                elif cum_index == 'add':
                    cum_rets = 100 + 100 * np.cumsum(forward_rets)

                total_return_index_df = pd.DataFrame(index=horizon_date, columns=[cross + "-forward-tot.close"])
                total_return_index_df[cross + "-forward-tot.close"] = cum_rets

                if output_calculation_fields:
                    total_return_index_df[cross + '-interpolated-outright-forward.close'] = interpolated_forward
                    total_return_index_df[cross + '-mtm.close'] = mtm
                    total_return_index_df[cross + '-roll.close'] = new_trade
                    total_return_index_df[cross + '.roll-date'] = roll_date
                    total_return_index_df[cross + '.delivery-date'] = delivery_date
                    total_return_index_df[cross + '-forward-return.close'] = forward_rets

                total_return_index_df_agg.append(total_return_index_df)

        return self._calculations.pandas_outer_join(total_return_index_df_agg)
Example #3
0
class FXOptionsCurve(object):
    """Constructs continuous forwards time series total return indices from underlying forwards contracts.

    """
    def __init__(
            self,
            market_data_generator=None,
            fx_vol_surface=None,
            enter_trading_dates=None,
            fx_options_trading_tenor=market_constants.fx_options_trading_tenor,
            roll_days_before=market_constants.fx_options_roll_days_before,
            roll_event=market_constants.fx_options_roll_event,
            construct_via_currency='no',
            fx_options_tenor_for_interpolation=market_constants.
        fx_options_tenor_for_interpolation,
            base_depos_tenor=data_constants.base_depos_tenor,
            roll_months=market_constants.fx_options_roll_months,
            cum_index=market_constants.fx_options_cum_index,
            strike=market_constants.fx_options_index_strike,
            contract_type=market_constants.fx_options_index_contract_type,
            premium_output=market_constants.fx_options_index_premium_output,
            position_multiplier=1,
            depo_tenor_for_option=market_constants.fx_options_depo_tenor,
            freeze_implied_vol=market_constants.fx_options_freeze_implied_vol,
            tot_label='',
            cal=None,
            output_calculation_fields=market_constants.
        output_calculation_fields):
        """Initializes FXForwardsCurve

        Parameters
        ----------
        market_data_generator : MarketDataGenerator
            Used for downloading market data

        fx_vol_surface : FXVolSurface
            We can specify the FX vol surface beforehand if we want

        fx_options_trading_tenor : str
            What is primary forward contract being used to trade (default - '1M')

        roll_days_before : int
            Number of days before roll event to enter into a new forwards contract

        roll_event : str
            What constitutes a roll event? ('month-end', 'quarter-end', 'year-end', 'expiry')

        cum_index : str
            In total return index, do we compute in additive or multiplicative way ('add' or 'mult')

        construct_via_currency : str
            What currency should we construct the forward via? Eg. if we asked for AUDJPY we can construct it via
            AUDUSD & JPYUSD forwards, as opposed to AUDJPY forwards (default - 'no')

        fx_options_tenor_for_interpolation : str(list)
            Which forwards should we use for interpolation

        base_depos_tenor : str(list)
            Which base deposits tenors do we need (this is only necessary if we want to start inferring depos)

        roll_months : int
            After how many months should we initiate a roll. Typically for trading 1M this should 1, 3M this should be 3
            etc.

        tot_label : str
            Postfix for the total returns field

        cal : str
            Calendar to use for expiry (if None, uses that of FX pair)

        output_calculation_fields : bool
            Also output additional data should forward expiries etc. alongside total returns indices
        """

        self._market_data_generator = market_data_generator
        self._calculations = Calculations()
        self._calendar = Calendar()
        self._filter = Filter()

        self._fx_vol_surface = fx_vol_surface

        self._enter_trading_dates = enter_trading_dates
        self._fx_options_trading_tenor = fx_options_trading_tenor
        self._roll_days_before = roll_days_before
        self._roll_event = roll_event

        self._construct_via_currency = construct_via_currency
        self._fx_options_tenor_for_interpolation = fx_options_tenor_for_interpolation
        self._base_depos_tenor = base_depos_tenor

        self._roll_months = roll_months
        self._cum_index = cum_index
        self._contact_type = contract_type
        self._strike = strike
        self._premium_output = premium_output

        self._position_multiplier = position_multiplier

        self._depo_tenor_for_option = depo_tenor_for_option

        self._freeze_implied_vol = freeze_implied_vol

        self._tot_label = tot_label
        self._cal = cal

        self._output_calculation_fields = output_calculation_fields

    def generate_key(self):
        from findatapy.market.ioengine import SpeedCache

        # Don't include any "large" objects in the key
        return SpeedCache().generate_key(self, [
            '_market_data_generator', '_calculations', '_calendar', '_filter'
        ])

    def fetch_continuous_time_series(self,
                                     md_request,
                                     market_data_generator,
                                     fx_vol_surface=None,
                                     enter_trading_dates=None,
                                     fx_options_trading_tenor=None,
                                     roll_days_before=None,
                                     roll_event=None,
                                     construct_via_currency=None,
                                     fx_options_tenor_for_interpolation=None,
                                     base_depos_tenor=None,
                                     roll_months=None,
                                     cum_index=None,
                                     strike=None,
                                     contract_type=None,
                                     premium_output=None,
                                     position_multiplier=None,
                                     depo_tenor_for_option=None,
                                     freeze_implied_vol=None,
                                     tot_label=None,
                                     cal=None,
                                     output_calculation_fields=None):

        if fx_vol_surface is None: fx_vol_surface = self._fx_vol_surface
        if enter_trading_dates is None:
            enter_trading_dates = self._enter_trading_dates
        if market_data_generator is None:
            market_data_generator = self._market_data_generator
        if fx_options_trading_tenor is None:
            fx_options_trading_tenor = self._fx_options_trading_tenor
        if roll_days_before is None: roll_days_before = self._roll_days_before
        if roll_event is None: roll_event = self._roll_event
        if construct_via_currency is None:
            construct_via_currency = self._construct_via_currency
        if fx_options_tenor_for_interpolation is None:
            fx_options_tenor_for_interpolation = self._fx_options_tenor_for_interpolation
        if base_depos_tenor is None: base_depos_tenor = self._base_depos_tenor
        if roll_months is None: roll_months = self._roll_months
        if strike is None: strike = self._strike
        if contract_type is None: contract_type = self._contact_type
        if premium_output is None: premium_output = self._premium_output

        if position_multiplier is None:
            position_multiplier = self._position_multiplier

        if depo_tenor_for_option is None:
            depo_tenor_for_option = self._depo_tenor_for_option

        if freeze_implied_vol is None:
            freeze_implied_vol = self._freeze_implied_vol

        if tot_label is None: tot_label = self._tot_label
        if cal is None: cal = self._cal

        if output_calculation_fields is None:
            output_calculation_fields = self._output_calculation_fields

        # Eg. we construct EURJPY via EURJPY directly (note: would need to have sufficient options/forward data for this)
        if construct_via_currency == 'no':

            if fx_vol_surface is None:
                # Download FX spot, FX forwards points and base depos etc.
                market = Market(market_data_generator=market_data_generator)

                md_request_download = MarketDataRequest(md_request=md_request)

                fx_conv = FXConv()

                # CAREFUL: convert the tickers to correct notation, eg. USDEUR => EURUSD, because our data
                # should be fetched in correct convention
                md_request_download.tickers = [
                    fx_conv.correct_notation(x) for x in md_request.tickers
                ]
                md_request_download.category = 'fx-vol-market'
                md_request_download.fields = 'close'
                md_request_download.abstract_curve = None
                md_request_download.fx_options_tenor = fx_options_tenor_for_interpolation
                md_request_download.base_depos_tenor = base_depos_tenor
                # md_request_download.base_depos_currencies = []

                forwards_market_df = market.fetch_market(md_request_download)
            else:
                forwards_market_df = None

            # Now use the original tickers
            return self.construct_total_return_index(
                md_request.tickers,
                forwards_market_df,
                fx_vol_surface=fx_vol_surface,
                enter_trading_dates=enter_trading_dates,
                fx_options_trading_tenor=fx_options_trading_tenor,
                roll_days_before=roll_days_before,
                roll_event=roll_event,
                fx_options_tenor_for_interpolation=
                fx_options_tenor_for_interpolation,
                roll_months=roll_months,
                cum_index=cum_index,
                strike=strike,
                contract_type=contract_type,
                premium_output=premium_output,
                position_multiplier=position_multiplier,
                freeze_implied_vol=freeze_implied_vol,
                depo_tenor_for_option=depo_tenor_for_option,
                tot_label=tot_label,
                cal=cal,
                output_calculation_fields=output_calculation_fields)
        else:
            # eg. we calculate via your domestic currency such as USD, so returns will be in your domestic currency
            # Hence AUDJPY would be calculated via AUDUSD and JPYUSD (subtracting the difference in returns)
            total_return_indices = []

            for tick in md_request.tickers:
                base = tick[0:3]
                terms = tick[3:6]

                md_request_base = MarketDataRequest(md_request=md_request)
                md_request_base.tickers = base + construct_via_currency

                md_request_terms = MarketDataRequest(md_request=md_request)
                md_request_terms.tickers = terms + construct_via_currency

                # Construct the base and terms separately (ie. AUDJPY => AUDUSD & JPYUSD)
                base_vals = self.fetch_continuous_time_series(
                    md_request_base,
                    market_data_generator,
                    fx_vol_surface=fx_vol_surface,
                    enter_trading_dates=enter_trading_dates,
                    fx_options_trading_tenor=fx_options_trading_tenor,
                    roll_days_before=roll_days_before,
                    roll_event=roll_event,
                    fx_options_tenor_for_interpolation=
                    fx_options_tenor_for_interpolation,
                    base_depos_tenor=base_depos_tenor,
                    roll_months=roll_months,
                    cum_index=cum_index,
                    strike=strike,
                    contract_type=contract_type,
                    premium_output=premium_output,
                    position_multiplier=position_multiplier,
                    depo_tenor_for_option=depo_tenor_for_option,
                    freeze_implied_vol=freeze_implied_vol,
                    tot_label=tot_label,
                    cal=cal,
                    output_calculation_fields=output_calculation_fields,
                    construct_via_currency='no')

                terms_vals = self.fetch_continuous_time_series(
                    md_request_terms,
                    market_data_generator,
                    fx_vol_surface=fx_vol_surface,
                    enter_trading_dates=enter_trading_dates,
                    fx_options_trading_tenor=fx_options_trading_tenor,
                    roll_days_before=roll_days_before,
                    roll_event=roll_event,
                    fx_options_tenor_for_interpolation=
                    fx_options_tenor_for_interpolation,
                    base_depos_tenor=base_depos_tenor,
                    roll_months=roll_months,
                    cum_index=cum_index,
                    strike=strike,
                    contract_type=contract_type,
                    position_multiplier=position_multiplier,
                    depo_tenor_for_option=depo_tenor_for_option,
                    freeze_implied_vol=freeze_implied_vol,
                    tot_label=tot_label,
                    cal=cal,
                    output_calculation_fields=output_calculation_fields,
                    construct_via_currency='no')

                # Special case for USDUSD case (and if base or terms USD are USDUSD
                if base + terms == construct_via_currency + construct_via_currency:
                    base_rets = self._calculations.calculate_returns(base_vals)
                    cross_rets = pd.DataFrame(0,
                                              index=base_rets.index,
                                              columns=base_rets.columns)
                elif base + construct_via_currency == construct_via_currency + construct_via_currency:
                    cross_rets = -self._calculations.calculate_returns(
                        terms_vals)
                elif terms + construct_via_currency == construct_via_currency + construct_via_currency:
                    cross_rets = self._calculations.calculate_returns(
                        base_vals)
                else:
                    base_rets = self._calculations.calculate_returns(base_vals)
                    terms_rets = self._calculations.calculate_returns(
                        terms_vals)

                    cross_rets = base_rets.sub(terms_rets.iloc[:, 0], axis=0)

                # First returns of a time series will by NaN, given we don't know previous point
                cross_rets.iloc[0] = 0

                cross_vals = self._calculations.create_mult_index(cross_rets)
                cross_vals.columns = [tick + '-option-tot.close']

                total_return_indices.append(cross_vals)

            return self._calculations.join(total_return_indices, how='outer')

    def unhedged_asset_fx(self,
                          assets_df,
                          asset_currency,
                          home_curr,
                          start_date,
                          finish_date,
                          spot_df=None):
        pass

    def hedged_asset_fx(self,
                        assets_df,
                        asset_currency,
                        home_curr,
                        start_date,
                        finish_date,
                        spot_df=None,
                        total_return_indices_df=None):
        pass

    def get_day_count_conv(self, currency):
        if currency in market_constants.currencies_with_365_basis:
            return 365.0

        return 360.0

    def construct_total_return_index(self,
                                     cross_fx,
                                     market_df,
                                     fx_vol_surface=None,
                                     enter_trading_dates=None,
                                     fx_options_trading_tenor=None,
                                     roll_days_before=None,
                                     roll_event=None,
                                     roll_months=None,
                                     cum_index=None,
                                     strike=None,
                                     contract_type=None,
                                     premium_output=None,
                                     position_multiplier=None,
                                     fx_options_tenor_for_interpolation=None,
                                     freeze_implied_vol=None,
                                     depo_tenor_for_option=None,
                                     tot_label=None,
                                     cal=None,
                                     output_calculation_fields=None):

        if fx_vol_surface is None: fx_vol_surface = self._fx_vol_surface
        if enter_trading_dates is None:
            enter_trading_dates = self._enter_trading_dates
        if fx_options_trading_tenor is None:
            fx_options_trading_tenor = self._fx_options_trading_tenor
        if roll_days_before is None: roll_days_before = self._roll_days_before
        if roll_event is None: roll_event = self._roll_event
        if roll_months is None: roll_months = self._roll_months
        if cum_index is None: cum_index = self._cum_index
        if strike is None: strike = self._strike
        if contract_type is None: contract_type = self._contact_type
        if premium_output is None: premium_output = self._premium_output
        if position_multiplier is None:
            position_multiplier = self._position_multiplier
        if fx_options_tenor_for_interpolation is None:
            fx_options_tenor_for_interpolation = self._fx_options_tenor_for_interpolation

        if freeze_implied_vol is None:
            freeze_implied_vol = self._freeze_implied_vol

        if depo_tenor_for_option is None:
            depo_tenor_for_option = self._depo_tenor_for_option
        if tot_label is None: tot_label = self._tot_label
        if cal is None: cal = self._cal

        if output_calculation_fields is None:
            output_calculation_fields = self._output_calculation_fields

        if not (isinstance(cross_fx, list)):
            cross_fx = [cross_fx]

        total_return_index_df_agg = []

        # Remove columns where there is no data (because these vols typically aren't quoted)
        if market_df is not None:
            market_df = market_df.dropna(how='all', axis=1)

        fx_options_pricer = FXOptionsPricer(premium_output=premium_output)

        def get_roll_date(horizon_d, expiry_d, asset_hols, month_adj=0):
            if roll_event == 'month-end':
                roll_d = horizon_d + CustomBusinessMonthEnd(
                    roll_months + month_adj, holidays=asset_hols)

                # Special case so always rolls on month end date, if specify 0 days
                if roll_days_before > 0:
                    return (roll_d - CustomBusinessDay(n=roll_days_before,
                                                       holidays=asset_hols))

            elif roll_event == 'expiry-date':
                roll_d = expiry_d

                # Special case so always rolls on expiry date, if specify 0 days
                if roll_days_before > 0:
                    return (roll_d - CustomBusinessDay(n=roll_days_before,
                                                       holidays=asset_hols))

            return roll_d

        for cross in cross_fx:

            if cal is None:
                cal = cross

            # Eg. if we specify USDUSD
            if cross[0:3] == cross[3:6]:
                total_return_index_df_agg.append(
                    pd.DataFrame(100,
                                 index=market_df.index,
                                 columns=[cross + "-option-tot.close"]))
            else:
                # Is the FX cross in the correct convention
                old_cross = cross

                cross = FXConv().correct_notation(cross)

                # TODO also specification of non-standard crosses like USDGBP
                if old_cross != cross:
                    pass

                if fx_vol_surface is None:
                    fx_vol_surface = FXVolSurface(
                        market_df=market_df,
                        asset=cross,
                        tenors=fx_options_tenor_for_interpolation,
                        depo_tenor=depo_tenor_for_option)

                    market_df = fx_vol_surface.get_all_market_data()

                horizon_date = market_df.index

                expiry_date = np.zeros(len(horizon_date), dtype=object)
                roll_date = np.zeros(len(horizon_date), dtype=object)

                new_trade = np.full(len(horizon_date), False, dtype=bool)
                exit_trade = np.full(len(horizon_date), False, dtype=bool)
                has_position = np.full(len(horizon_date), False, dtype=bool)

                asset_holidays = self._calendar.get_holidays(cal=cross)

                # If no entry dates specified, assume we just keep rolling
                if enter_trading_dates is None:
                    # Get first expiry date
                    expiry_date[
                        0] = self._calendar.get_expiry_date_from_horizon_date(
                            pd.DatetimeIndex([horizon_date[0]]),
                            fx_options_trading_tenor,
                            cal=cal,
                            asset_class='fx-vol')[0]

                    # For first month want it to expire within that month (for consistency), hence month_adj=0 ONLY here
                    roll_date[0] = get_roll_date(horizon_date[0],
                                                 expiry_date[0],
                                                 asset_holidays,
                                                 month_adj=0)

                    # New trade => entry at beginning AND on every roll
                    new_trade[0] = True
                    exit_trade[0] = False
                    has_position[0] = True

                    # Get all the expiry dates and roll dates
                    # At each "roll/trade" day we need to reset them for the new contract
                    for i in range(1, len(horizon_date)):
                        has_position[i] = True

                        # If the horizon date has reached the roll date (from yesterday), we're done, and we have a
                        # new roll/trade
                        if (horizon_date[i] - roll_date[i - 1]).days >= 0:
                            new_trade[i] = True
                        else:
                            new_trade[i] = False

                        # If we're entering a new trade/contract (and exiting an old trade) we need to get new expiry and roll dates
                        if new_trade[i]:
                            exp = self._calendar.get_expiry_date_from_horizon_date(
                                pd.DatetimeIndex([horizon_date[i]]),
                                fx_options_trading_tenor,
                                cal=cal,
                                asset_class='fx-vol')[0]

                            # Make sure we don't expire on a date in the history where there isn't market data
                            # It is ok for future values to expire after market data (just not in the backtest!)
                            if exp not in market_df.index:
                                exp_index = market_df.index.searchsorted(exp)

                                if exp_index < len(market_df.index):
                                    exp_index = min(exp_index,
                                                    len(market_df.index))

                                    exp = market_df.index[exp_index]

                            expiry_date[i] = exp

                            roll_date[i] = get_roll_date(
                                horizon_date[i], expiry_date[i],
                                asset_holidays)
                            exit_trade[i] = True
                        else:
                            if horizon_date[i] <= expiry_date[i - 1]:
                                # Otherwise use previous expiry and roll dates, because we're still holding same contract
                                expiry_date[i] = expiry_date[i - 1]
                                roll_date[i] = roll_date[i - 1]
                                exit_trade[i] = False
                            else:
                                exit_trade[i] = True
                else:
                    new_trade[horizon_date.searchsorted(
                        enter_trading_dates)] = True
                    has_position[horizon_date.searchsorted(
                        enter_trading_dates)] = True

                    # Get first expiry date
                    #expiry_date[0] = \
                    #    self._calendar.get_expiry_date_from_horizon_date(pd.DatetimeIndex([horizon_date[0]]),
                    #                                                     fx_options_trading_tenor, cal=cal,
                    #                                                     asset_class='fx-vol')[0]

                    # For first month want it to expire within that month (for consistency), hence month_adj=0 ONLY here
                    #roll_date[0] = get_roll_date(horizon_date[0], expiry_date[0], asset_holidays, month_adj=0)

                    # New trade => entry at beginning AND on every roll
                    #new_trade[0] = True
                    #exit_trade[0] = False
                    #has_position[0] = True

                    # Get all the expiry dates and roll dates
                    # At each "roll/trade" day we need to reset them for the new contract
                    for i in range(0, len(horizon_date)):

                        # If we're entering a new trade/contract (and exiting an old trade) we need to get new expiry and roll dates
                        if new_trade[i]:
                            exp = \
                                self._calendar.get_expiry_date_from_horizon_date(pd.DatetimeIndex([horizon_date[i]]),
                                                                                 fx_options_trading_tenor, cal=cal,
                                                                                 asset_class='fx-vol')[0]

                            # Make sure we don't expire on a date in the history where there isn't market data
                            # It is ok for future values to expire after market data (just not in the backtest!)
                            if exp not in market_df.index:
                                exp_index = market_df.index.searchsorted(exp)

                                if exp_index < len(market_df.index):
                                    exp_index = min(exp_index,
                                                    len(market_df.index))

                                    exp = market_df.index[exp_index]

                            expiry_date[i] = exp

                            # roll_date[i] = get_roll_date(horizon_date[i], expiry_date[i], asset_holidays)
                            # if i > 0:
                            # Makes the assumption we aren't rolling contracts
                            exit_trade[i] = False
                        else:
                            if i > 0:
                                # Check there's valid expiry on previous day (if not then we're not in an option trade here!)
                                if expiry_date[i - 1] == 0:
                                    has_position[i] = False
                                else:
                                    if horizon_date[i] <= expiry_date[i - 1]:
                                        # Otherwise use previous expiry and roll dates, because we're still holding same contract
                                        expiry_date[i] = expiry_date[i - 1]
                                        # roll_date[i] = roll_date[i - 1]
                                        has_position[i] = True

                                    if horizon_date[i] == expiry_date[i]:
                                        exit_trade[i] = True
                                    else:
                                        exit_trade[i] = False

                # Note: may need to add discount factor when marking to market option

                mtm = np.zeros(len(horizon_date))
                calculated_strike = np.zeros(len(horizon_date))
                interpolated_option = np.zeros(len(horizon_date))
                implied_vol = np.zeros(len(horizon_date))
                delta = np.zeros(len(horizon_date))

                # For debugging
                df_temp = pd.DataFrame()

                df_temp['expiry-date'] = expiry_date
                df_temp['horizon-date'] = horizon_date
                df_temp['roll-date'] = roll_date
                df_temp['new-trade'] = new_trade
                df_temp['exit-trade'] = exit_trade
                df_temp['has-position'] = has_position

                if has_position[0]:
                    # Special case: for first day of history (given have no previous positions)
                    option_values_, spot_, strike_, vol_, delta_, expiry_date_, intrinsic_values_  = \
                        fx_options_pricer.price_instrument(cross, horizon_date[0], strike, expiry_date[0],
                            contract_type=contract_type,
                            tenor=fx_options_trading_tenor,
                            fx_vol_surface=fx_vol_surface,
                            return_as_df=False)

                    interpolated_option[0] = option_values_
                    calculated_strike[0] = strike_
                    implied_vol[0] = vol_

                mtm[0] = 0

                # Now price options for rest of history
                # On rolling dates: MTM will be the previous option contract (interpolated)
                # On non-rolling dates: it will be the current option contract
                for i in range(1, len(horizon_date)):
                    if exit_trade[i]:
                        # Price option trade being exited
                        option_values_, spot_, strike_, vol_, delta_, expiry_date_, intrinsic_values_ = \
                            fx_options_pricer.price_instrument(cross, horizon_date[i], calculated_strike[i-1], expiry_date[i-1],
                            contract_type=contract_type,
                            tenor=fx_options_trading_tenor,
                            fx_vol_surface=fx_vol_surface,
                            return_as_df=False)

                        # Store as MTM
                        mtm[i] = option_values_
                        delta[
                            i] = 0  # Note: this will get overwritten if there's a new trade
                        calculated_strike[i] = calculated_strike[
                            i -
                            1]  # Note: this will get overwritten if there's a new trade

                    if new_trade[i]:
                        # Price new option trade being entered
                        option_values_, spot_, strike_, vol_, delta_, expiry_date_, intrinsic_values_ = \
                            fx_options_pricer.price_instrument(cross, horizon_date[i], strike, expiry_date[i],
                            contract_type=contract_type,
                            tenor=fx_options_trading_tenor,
                            fx_vol_surface=fx_vol_surface,
                            return_as_df=False)

                        calculated_strike[
                            i] = strike_  # option_output[cross + '-strike.close'].values
                        implied_vol[i] = vol_
                        interpolated_option[i] = option_values_
                        delta[i] = delta_

                    elif has_position[i] and not (exit_trade[i]):
                        # Price current option trade
                        # - strike/expiry the same as yesterday
                        # - other market inputs taken live, closer to expiry
                        calculated_strike[i] = calculated_strike[i - 1]

                        if freeze_implied_vol:
                            frozen_vol = implied_vol[i - 1]
                        else:
                            frozen_vol = None

                        option_values_, spot_, strike_, vol_, delta_, expiry_date_, intrinsic_values_ = \
                            fx_options_pricer.price_instrument(cross, horizon_date[i], calculated_strike[i],
                                expiry_date[i],
                                vol=frozen_vol,
                                contract_type=contract_type,
                                tenor=fx_options_trading_tenor,
                                fx_vol_surface=fx_vol_surface,
                                return_as_df=False)

                        interpolated_option[i] = option_values_
                        implied_vol[i] = vol_
                        mtm[i] = interpolated_option[i]
                        delta[i] = delta_

                # Calculate delta hedging P&L
                spot_rets = (market_df[cross + ".close"] /
                             market_df[cross + ".close"].shift(1) - 1).values

                if tot_label == '':
                    tot_rets = spot_rets
                else:
                    tot_rets = (
                        market_df[cross + "-" + tot_label + ".close"] /
                        market_df[cross + "-" + tot_label + ".close"].shift(1)
                        - 1).values

                # Remember to take the inverted sign, eg. if call is +20%, we need to -20% of spot to flatten delta
                # Also invest for whether we are long or short the option
                delta_hedging_pnl = -np.roll(
                    delta, 1) * tot_rets * position_multiplier
                delta_hedging_pnl[0] = 0

                # Calculate options P&L (given option premium is already percentage, only need to subtract)
                # Again need to invert if we are short option
                option_rets = (mtm - np.roll(interpolated_option,
                                             1)) * position_multiplier
                option_rets[0] = 0

                # Calculate option + delta hedging P&L
                option_delta_rets = delta_hedging_pnl + option_rets

                if cum_index == 'mult':
                    cum_rets = 100 * np.cumprod(1.0 + option_rets)
                    cum_delta_rets = 100 * np.cumprod(1.0 + delta_hedging_pnl)
                    cum_option_delta_rets = 100 * np.cumprod(1.0 +
                                                             option_delta_rets)

                elif cum_index == 'add':
                    cum_rets = 100 + 100 * np.cumsum(option_rets)
                    cum_delta_rets = 100 + 100 * np.cumsum(delta_hedging_pnl)
                    cum_option_delta_rets = 100 + 100 * np.cumsum(
                        option_delta_rets)

                total_return_index_df = pd.DataFrame(
                    index=horizon_date, columns=[cross + "-option-tot.close"])
                total_return_index_df[cross + "-option-tot.close"] = cum_rets

                if output_calculation_fields:
                    total_return_index_df[
                        cross +
                        '-interpolated-option.close'] = interpolated_option
                    total_return_index_df[cross + '-mtm.close'] = mtm
                    total_return_index_df[cross + ".close"] = market_df[
                        cross + ".close"].values
                    total_return_index_df[cross +
                                          '-implied-vol.close'] = implied_vol
                    total_return_index_df[cross +
                                          '-new-trade.close'] = new_trade
                    total_return_index_df[cross + '.roll-date'] = roll_date
                    total_return_index_df[cross +
                                          '-exit-trade.close'] = exit_trade
                    total_return_index_df[cross + '.expiry-date'] = expiry_date
                    total_return_index_df[
                        cross + '-calculated-strike.close'] = calculated_strike
                    total_return_index_df[cross +
                                          '-option-return.close'] = option_rets
                    total_return_index_df[cross +
                                          '-spot-return.close'] = spot_rets
                    total_return_index_df[cross +
                                          '-tot-return.close'] = tot_rets
                    total_return_index_df[cross + '-delta.close'] = delta
                    total_return_index_df[
                        cross + '-delta-pnl-return.close'] = delta_hedging_pnl
                    total_return_index_df[
                        cross + '-delta-pnl-index.close'] = cum_delta_rets
                    total_return_index_df[
                        cross +
                        '-option-delta-return.close'] = option_delta_rets
                    total_return_index_df[
                        cross +
                        '-option-delta-tot.close'] = cum_option_delta_rets

                total_return_index_df_agg.append(total_return_index_df)

        return self._calculations.join(total_return_index_df_agg, how='outer')

    def apply_tc_signals_to_total_return_index(self,
                                               cross_fx,
                                               total_return_index_orig_df,
                                               option_tc_bp,
                                               spot_tc_bp,
                                               signal_df=None,
                                               cum_index=None):

        # TODO signal not implemented yet
        if cum_index is None: cum_index = self._cum_index

        total_return_index_df_agg = []

        if not (isinstance(cross_fx, list)):
            cross_fx = [cross_fx]

        option_tc = option_tc_bp / (2 * 100 * 100)
        spot_tc = spot_tc_bp / (2 * 100 * 100)

        total_return_index_df = total_return_index_orig_df.copy()

        for cross in cross_fx:

            # p = abs(total_return_index_df[cross + '-roll.close'].shift(1)) * option_tc
            # q = abs(total_return_index_df[cross + '-delta.close'] - total_return_index_df[cross + '-delta.close'].shift(1)) * spot_tc

            # Additional columns to include P&L with transaction costs
            total_return_index_df[cross + '-option-return-with-tc.close'] = \
                total_return_index_df[cross + '-option-return.close'] - abs(total_return_index_df[cross + '-new-trade.close'].shift(1)) * option_tc
            total_return_index_df[cross + '-delta-pnl-return-with-tc.close'] = \
                total_return_index_df[cross + '-delta-pnl-return.close'] \
                - abs(total_return_index_df[cross + '-delta.close'] - total_return_index_df[cross + '-delta.close'].shift(1)) * spot_tc

            total_return_index_df[cross +
                                  '-option-return-with-tc.close'][0] = 0
            total_return_index_df[cross +
                                  '-delta-pnl-return-with-tc.close'][0] = 0
            total_return_index_df[cross + '-option-delta-return-with-tc.close'] = \
                total_return_index_df[cross + '-option-return-with-tc.close'] + total_return_index_df[cross + '-delta-pnl-return-with-tc.close']

            if cum_index == 'mult':
                cum_rets = 100 * np.cumprod(1.0 + total_return_index_df[
                    cross + '-option-return-with-tc.close'].values)
                cum_delta_rets = 100 * np.cumprod(1.0 + total_return_index_df[
                    cross + '-delta-pnl-return-with-tc.close'].values)
                cum_option_delta_rets = 100 * np.cumprod(
                    1.0 + total_return_index_df[
                        cross + '-option-delta-return-with-tc.close'].values)

            elif cum_index == 'add':
                cum_rets = 100 + 100 * np.cumsum(total_return_index_df[
                    cross + '-option-return-with-tc.close'].values)
                cum_delta_rets = 100 + 100 * np.cumsum(total_return_index_df[
                    cross + '-delta-pnl-return-with-tc.close'].values)
                cum_option_delta_rets = 100 + 100 * np.cumsum(
                    total_return_index_df[
                        cross + '-option-delta-return-with-tc.close'].values)

            total_return_index_df[cross +
                                  "-option-tot-with-tc.close"] = cum_rets
            total_return_index_df[
                cross + '-delta-pnl-index-with-tc.close'] = cum_delta_rets
            total_return_index_df[
                cross +
                '-option-delta-tot-with-tc.close'] = cum_option_delta_rets

            total_return_index_df_agg.append(total_return_index_df)

        return self._calculations.join(total_return_index_df_agg, how='outer')
    filter = Filter()

    # choose run_example = 0 for everything
    # run_example = 1 - get holidays for FX, EUR and EURUSD, as well as 
    #   listing weekends
    # run_example = 2 - get FX delivery dates and FX option expiries for 
    #   various tenors
    # run_example = 3 - get number of days between pandas DatetimeIndex
    # run_example = 4 - filter time series by EURUSD holidays
    # run_example = 4 - option expiries for USDJPY

    run_example = 0

    if run_example == 1 or run_example == 0:
        # Get the holidays (which aren"t weekends)
        print(calendar.get_holidays(start_date="01 Jan 1999 00:50",
                                    end_date="31 Dec 1999", cal="FX"))
        print(calendar.get_holidays(start_date="01 Jan 2000 00:10",
                                    end_date="31 Dec 2000", cal="EUR"))
        print(calendar.get_holidays(start_date="01 Jan 2000 00:10",
                                    end_date="31 Dec 2000", cal="EURUSD"))

        # Get the holidays (which are weekends)
        print(calendar.get_holidays(start_date="01 Jan 1999 00:50",
                                    end_date="31 Dec 1999", cal="WKD"))

    if run_example == 2 or run_example == 0:
        # Get delivery dates for these horizon dates - typically would use 
        # to get forward maturities
        print(calendar.get_delivery_date_from_horizon_date(
            pd.to_datetime([pd.Timestamp("02 Nov 2020")]), "ON", cal="EURUSD"))