Example #1
0
    def test_apply_to_two_dims_over_second(self):
        share = Share(mock_dataset.fields.votes,
                      over=mock_dataset.fields.political_party)
        result = share.apply(dimx2_date_str_totals_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series(
            [
                49.79,
                7.07,
                43.12,
                100.0,
                49.78,
                50.21,
                100.0,
                48.83,
                51.16,
                100.0,
                55.42,
                44.57,
                100.0,
                60.39,
                39.60,
                100.0,
                26.60,
                73.39,
                100.0,
            ],
            name=f_metric_key,
            index=dimx2_date_str_totals_df.index,
        )

        pandas.testing.assert_series_equal(expected, result, rtol=0.5e-3)
Example #2
0
    def test_apply_to_zero_dims(self):
        share = Share(mock_dataset.fields.votes)
        result = share.apply(dimx0_metricx1_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series([100.], name=f_metric_key)
        pandas.testing.assert_series_equal(expected, result)
Example #3
0
    def test_apply_to_zero_dims(self):
        share = Share(slicer.metrics.votes)
        result = share.apply(single_metric_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        expected = pd.Series([100.], name=f_metric_key)
        pandas.testing.assert_series_equal(expected, result)
Example #4
0
    def test_apply_to_two_dims_over_first(self):
        share = Share(mock_dataset.fields.votes,
                      over=mock_dataset.fields.timestamp)
        result = share.apply(dimx2_date_str_totalsx2_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        metric_series = dimx2_date_str_totalsx2_df[f_metric_key]
        expected = 100 * metric_series / metric_series.iloc[-1]
        pandas.testing.assert_series_equal(expected, result, rtol=0.5e-3)
Example #5
0
    def test_apply_to_one_dim_over_none(self):
        share = Share(mock_dataset.fields.votes)
        result = share.apply(dimx1_str_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series([100.] * 3,
                             name=f_metric_key,
                             index=dimx1_str_df.index)
        pandas.testing.assert_series_equal(expected, result, rtol=0.5e-3)
Example #6
0
    def test_apply_to_one_dim_over_first(self):
        share = Share(mock_dataset.fields.votes,
                      over=mock_dataset.fields.political_party)
        result = share.apply(dimx1_str_totals_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series([48.8487, 0.9638, 50.1873, 100.0],
                             name=f_metric_key,
                             index=dimx1_str_totals_df.index)
        pandas.testing.assert_series_equal(expected, result, rtol=0.5e-3)
Example #7
0
    def test_apply_to_two_dims_over_first(self):
        share = Share(slicer.metrics.votes, over=slicer.dimensions.timestamp)
        result = share.apply(cont_uni_dim_all_totals_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        metric_series = cont_uni_dim_all_totals_df[f_metric_key]
        expected = 100 * metric_series / metric_series.iloc[-1]
        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #8
0
    def test_apply_to_two_dims_over_none(self):
        share = Share(mock_dataset.fields.votes)
        result = share.apply(dimx2_date_str_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series([100.] * 13,
                             name=f_metric_key,
                             index=dimx2_date_str_df.index)
        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #9
0
    def test_apply_to_one_dim_over_none(self):
        share = Share(slicer.metrics.votes)
        result = share.apply(cat_dim_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        expected = pd.Series([100.] * 3,
                             name=f_metric_key,
                             index=cat_dim_df.index)
        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #10
0
    def test_find_share_dimensions_with_a_multiple_share_operations(self, mock_fetch_data: Mock, mock_paginate: Mock):
        mock_widget = f.Widget(Share(slicer.metrics.votes, over=slicer.dimensions.state),
                               Share(slicer.metrics.wins, over=slicer.dimensions.state))
        mock_widget.transform = Mock()

        dimensions = slicer.dimensions.timestamp, slicer.dimensions.state, slicer.dimensions.political_party

        slicer.data \
            .widget(mock_widget) \
            .dimension(*dimensions) \
            .fetch()

        mock_fetch_data.assert_called_once_with(ANY, ANY, ANY, DimensionMatcher(slicer.dimensions.state), ANY)
Example #11
0
    def test_apply_to_one_dim_over_first(self):
        share = Share(slicer.metrics.votes,
                      over=slicer.dimensions.political_party)
        result = share.apply(cat_dim_totals_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        expected = pd.Series([48.849, 0.964, 50.187, 100.0],
                             name=f_metric_key,
                             index=cat_dim_totals_df.index)
        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #12
0
    def test_apply_to_two_dims_over_second_with_one_row_per_group(self):
        raw_df = dimx2_date_str_totals_df.iloc[[0, 3, 4, 6]]

        share = Share(mock_dataset.fields.votes,
                      over=mock_dataset.fields.political_party)
        result = share.apply(raw_df, None)

        f_metric_key = alias_selector(mock_dataset.fields.votes.alias)

        expected = pd.Series([49.79, 100.0, 49.78, 100.0],
                             name=f_metric_key,
                             index=raw_df.index)

        pandas.testing.assert_series_equal(expected, result, rtol=0.5e-3)
Example #13
0
    def test_apply_to_two_dims_over_second_with_one_row_per_group(self):
        raw_df = cont_uni_dim_totals_df.iloc[[0, 2, 3, 5]]

        share = Share(slicer.metrics.votes, over=slicer.dimensions.state)
        result = share.apply(raw_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        expected = pd.Series([36.624, 100., 37.411, 100.],
                             name=f_metric_key,
                             index=raw_df.index)

        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #14
0
    def test_apply_to_two_dims_over_second(self):
        share = Share(slicer.metrics.votes, over=slicer.dimensions.state)
        result = share.apply(cont_uni_dim_totals_df, None)

        f_metric_key = format_metric_key(slicer.metrics.votes.key)

        expected = pd.Series([
            36.624, 63.376, 100., 37.411, 62.589, 100., 37.521, 62.479, 100.,
            37.606, 62.394, 100., 38.294, 61.706, 100., 27.705, 72.295, 100.
        ],
                             name=f_metric_key,
                             index=cont_uni_dim_totals_df.index)

        pandas.testing.assert_series_equal(expected,
                                           result,
                                           check_less_precise=True)
Example #15
0
    def test_find_share_dimensions_with_a_multiple_share_operations(
            self, mock_fetch_data: Mock, mock_paginate: Mock):
        mock_widget = f.Widget(
            Share(mock_dataset.fields.votes, over=mock_dataset.fields.state),
            Share(mock_dataset.fields.wins, over=mock_dataset.fields.state),
        )
        mock_widget.transform = Mock()

        dimensions = (
            mock_dataset.fields.timestamp,
            mock_dataset.fields.state,
            mock_dataset.fields.political_party,
        )

        mock_dataset.query.widget(mock_widget).dimension(*dimensions).fetch()

        mock_fetch_data.assert_called_once_with(
            ANY, ANY, ANY, FieldMatcher(mock_dataset.fields.state), ANY)
Example #16
0
    def test_share_for_references_with_delta(self):
        dataset = MagicMock()
        dataset.table._table_name = "table"
        value_field = Field("value", None)
        over_field = Field("dim-over", None)
        share = Share(value_field, over_field)
        reference = Reference(value_field,
                              WeekOverWeek,
                              delta=True,
                              delta_percent=False)

        df = pd.DataFrame.from_dict({
            "$value_wow": [10, 15, 20, 5, 50],
            "$value": [12, 16, 14, 8, 50],
            "$share(value,dim-over)": [24, 32, 28, 16, 100],
            "$dim-over": ["A", "B", "C", "D", "~~totals"]
        }).set_index('$dim-over')

        result = share.apply(df, reference)

        np.testing.assert_array_equal(([4, 2, -12, 6, 0]), result.values)