Example #1
0
    def deaths_and_injuries_sum(self):

        low, med, high, unknown, all_levels = self._get_risk_model_rows()

        def empty_deaths(x):
            if x:
                return x.risk_model_deaths is None and x.risk_model_injuries is None

        def sum_deaths(x):
            if x:
                return (x.risk_model_deaths or 0) + (x.risk_model_injuries
                                                     or 0)

        d = AttrDict({
            'low':
            None if empty_deaths(low) else sum_deaths(low),
            'medium':
            None if empty_deaths(med) else sum_deaths(med),
            'high':
            None if empty_deaths(high) else sum_deaths(high),
            'unknown':
            None if empty_deaths(unknown) else sum_deaths(unknown),
            'all':
            None if empty_deaths(all_levels) else sum_deaths(all_levels)
        })

        return d
Example #2
0
 def national_risk_model_deaths_injuries_sum_quartile(self):
     # TODO: Need to optimize...
     ret = AttrDict()
     results = self.national_calculations.objects.filter(
         id=self.firedepartment.id)
     for numlevel, level in self.RISK_LEVELS:
         ret[level] = None
         for result in results:
             if result.level == numlevel:
                 ret[level] = result.risk_model_deaths_injuries_sum_quartile
     return ret
Example #3
0
    def _get_risk_model_field(self, field):
        """
        Return low/medium/high risk models
        """
        low, med, high, unknown, all_levels = self._get_risk_model_rows()

        return AttrDict({
            'low': getattr(low, field, None),
            'medium': getattr(med, field, None),
            'high': getattr(high, field, None),
            'unknown': getattr(unknown, field, None),
            'all': getattr(all_levels, field, None)
        })
Example #4
0
 def community_fire_risk(self):
     return AttrDict({
         'low':
         self.population_metrics_rows.low.risk_model_fires_quartile,
         'medium':
         self.population_metrics_rows.medium.risk_model_fires_quartile,
         'high':
         self.population_metrics_rows.high.risk_model_fires_quartile,
         'unknown':
         self.population_metrics_rows.unknown.risk_model_fires_quartile,
         'all':
         self.population_metrics_rows.all.risk_model_fires_quartile
     })
Example #5
0
    def residential_fires_avg_3_years_breaks(self):
        """
        Risk model fire count breaks for the bullet chart
        """
        ret = AttrDict()
        for numlevel, level in self.RISK_LEVELS:
            vals = self.quartile_class.objects.get_field_stats(
                'residential_fires_avg_3_years',
                group_by='residential_fires_avg_3_years_quartile',
                population_class=self.firedepartment.population_class,
                level=numlevel)
            ret[level] = [n['max'] for n in vals]

        return ret
Example #6
0
    def risk_model_deaths_injuries_breaks(self):
        """
        Deaths and injuries for the bullet chart
        """
        ret = AttrDict()
        for numlevel, level in self.RISK_LEVELS:
            vals = self.quartile_class.objects.get_field_stats(
                'risk_model_deaths_injuries_sum',
                group_by='risk_model_deaths_injuries_sum_quartile',
                population_class=self.firedepartment.population_class,
                level=numlevel)
            ret[level] = [n['max'] for n in vals]

        return ret
Example #7
0
    def risk_model_greater_than_size_2_breaks(self):
        """
        Size 2 or above fire breaks for the bullet chart
        """
        ret = AttrDict()
        for numlevel, level in self.RISK_LEVELS:
            vals = self.quartile_class.objects.get_field_stats(
                'risk_model_size1_percent_size2_percent_sum',
                group_by='risk_model_size1_percent_size2_percent_sum_quartile',
                population_class=self.firedepartment.population_class,
                level=numlevel)
            ret[level] = [n['max'] for n in vals]

        return ret
Example #8
0
    def dist_model_residential_fires_quartile_breaks(self):
        if not self.peers:
            self._get_peers()

        def get(df):
            if df is not None and not df.empty:
                return df.groupby(['dist_model_residential_fires_quartile'
                                   ]).max()['dist_model_score'].tolist()

        return AttrDict({
            'low': get(self.peers.low),
            'medium': get(self.peers.medium),
            'high': get(self.peers.high),
            'unknown': get(self.peers.unknown),
            'all': get(self.peers.all)
        })
Example #9
0
    def dist_model_risk_model_deaths_injuries_quartile_avg(self):
        if not self.peers:
            self._get_peers()

        def get(df):
            if df is not None and not df.empty:
                return df.dist_model_risk_model_deaths_injuries_quartile_avg.mean(
                )

        return AttrDict({
            'low': get(self.peers.low),
            'medium': get(self.peers.medium),
            'high': get(self.peers.high),
            'unknown': get(self.peers.unknown),
            'all': get(self.peers.all)
        })
Example #10
0
    def dist_model_residential_fires_quartile(self):
        if not self.peers:
            self._get_peers()

        def get(df):
            if df is not None and not df.empty:
                return df.loc[
                    df['id'] == self.firedepartment.
                    id].dist_model_residential_fires_quartile.values[0]

        return AttrDict({
            'low': get(self.peers.low),
            'medium': get(self.peers.medium),
            'high': get(self.peers.high),
            'unknown': get(self.peers.unknown),
            'all': get(self.peers.all)
        })
Example #11
0
    def dist_model_residential_fires_quartile_avg(self):
        """
        Used as the "Assessment of performance score based on the number of fires." Safe Grade
        """
        if not self.peers:
            self._get_peers()

        def get(df):
            if df is not None and not df.empty:
                return df.dist_model_residential_fires_quartile_avg.mean()

        return AttrDict({
            'low': get(self.peers.low),
            'medium': get(self.peers.medium),
            'high': get(self.peers.high),
            'unknown': get(self.peers.unknown),
            'all': get(self.peers.all)
        })
Example #12
0
 def community_death_and_injury_risk(self):
     return AttrDict({
         'low':
         self.population_metrics_rows.low.
         risk_model_deaths_injuries_sum_quartile,
         'medium':
         self.population_metrics_rows.medium.
         risk_model_deaths_injuries_sum_quartile,
         'high':
         self.population_metrics_rows.high.
         risk_model_deaths_injuries_sum_quartile,
         'unknown':
         self.population_metrics_rows.unknown.
         risk_model_deaths_injuries_sum_quartile,
         'all':
         self.population_metrics_rows.all.
         risk_model_deaths_injuries_sum_quartile
     })
Example #13
0
    def residential_structure_fire_counts(self):
        ret = AttrDict()
        for numlevel, level in self.RISK_LEVELS:
            v = self.firedepartment.nfirsstatistic_set.filter(metric='residential_structure_fires', level=numlevel)\
                .extra(select={
                       'year_max': "SELECT MAX(COUNT) FROM firestation_nfirsstatistic b WHERE b.fire_department_id = firestation_nfirsstatistic.fire_department_id AND b.year = firestation_nfirsstatistic.year and b.metric='fire_calls' and b.level = firestation_nfirsstatistic.level"
                       })\
                .extra(select={
                       'year_min': "SELECT 0"
                       })
            ret[level] = [
                dict(year=i.year,
                     count=i.count,
                     year_max=i.year_max,
                     year_min=i.year_min) for i in v
            ]

        return ret
Example #14
0
    def dist_model_risk_model_deaths_injuries_quartile_breaks(self):
        """
        Used as the "Assessment of performance score based on fire spread risk." Safe Grade
        """
        if not self.peers:
            self._get_peers()

        def get(df):
            if df is not None and not df.empty:
                return df.groupby([
                    'dist_model_risk_model_deaths_injuries_quartile'
                ]).max()['dist_model_score'].tolist()

        return AttrDict({
            'low': get(self.peers.low),
            'medium': get(self.peers.medium),
            'high': get(self.peers.high),
            'unknown': get(self.peers.unknown),
            'all': get(self.peers.all)
        })
Example #15
0
    def residential_fires_3_year_avg(self):
        def get(level):
            return self.firedepartment.nfirsstatistic_set.filter(
                metric='residential_structure_fires',
                year__gte=2010,
                level=level).aggregate(Avg('count')).get('count__avg')

        low = get(1)
        medium = get(2)
        high = get(4)
        unknown = get(5)
        all_levels = get(0)

        return AttrDict({
            'low': low,
            'medium': medium,
            'high': high,
            'unknown': unknown,
            'all': all_levels
        })
Example #16
0
 def population_metrics_rows(self):
     """
     Returns the matching rows from the population metrics table.
     """
     return AttrDict({
         'low':
         self.quartile_class.objects.filter(id=self.firedepartment.id,
                                            level=1).first(),
         'medium':
         self.quartile_class.objects.filter(id=self.firedepartment.id,
                                            level=2).first(),
         'high':
         self.quartile_class.objects.filter(id=self.firedepartment.id,
                                            level=4).first(),
         'unknown':
         self.quartile_class.objects.filter(id=self.firedepartment.id,
                                            level=5).first(),
         'all':
         self.quartile_class.objects.filter(id=self.firedepartment.id,
                                            level=0).first()
     })
Example #17
0
    def nfirs_deaths_and_injuries_sum(self):
        def get(level):
            return self.firedepartment.nfirsstatistic_set.filter(
                Q(metric='civilian_casualties')
                | Q(metric='firefighter_casualties'),
                level=level,
                year__gte=2010).aggregate(Avg('count')).get('count__avg')

        low = get(1)
        medium = get(2)
        high = get(4)
        unknown = get(5)
        all_levels = get(0)

        return AttrDict({
            'low': low,
            'medium': medium,
            'high': high,
            'unknown': unknown,
            'all': all_levels
        })
Example #18
0
 def __init__(self, firedepartment, quartile_class, national_calculations):
     self.firedepartment = firedepartment
     self.quartile_class = quartile_class
     self.national_calculations = national_calculations
     self.peers = AttrDict()