Example #1
0
def AdvectionDiffusionGLS(
    V: fd.FunctionSpace,
    theta: fd.Function,
    phi: fd.Function,
    PeInv: float = 1e-4,
    phi_t: fd.Function = None,
):
    PeInv_ct = fd.Constant(PeInv)
    rho = fd.TestFunction(V)
    F = (inner(theta, grad(phi)) * rho +
         PeInv_ct * inner(grad(phi), grad(rho))) * dx

    if phi_t:
        F += phi_t * rho * dx

    h = fd.CellDiameter(V.ufl_domain())
    R_U = dot(theta, grad(phi)) - PeInv_ct * div(grad(phi))

    if phi_t:
        R_U += phi_t

    beta_gls = 0.9
    tau_gls = beta_gls * ((4.0 * dot(theta, theta) / h**2) + 9.0 *
                          (4.0 * PeInv_ct / h**2)**2)**(-0.5)

    theta_U = dot(theta, grad(rho)) - PeInv_ct * div(grad(rho))
    F += tau_gls * inner(R_U, theta_U) * dx()

    return F
Example #2
0
    def dgls_form(self, problem, mesh, bcs_p):
        rho = problem.rho
        mu = problem.mu
        k = problem.k
        f = problem.f

        q, p = fire.TrialFunctions(self._W)
        w, v = fire.TestFunctions(self._W)

        n = fire.FacetNormal(mesh)
        h = fire.CellDiameter(mesh)

        # Stabilizing parameters
        has_mesh_characteristic_length = True
        delta_0 = fire.Constant(1)
        delta_1 = fire.Constant(-1 / 2)
        delta_2 = fire.Constant(1 / 2)
        delta_3 = fire.Constant(1 / 2)
        eta_p = fire.Constant(100)
        eta_q = fire.Constant(100)
        h_avg = (h("+") + h("-")) / 2.0
        if has_mesh_characteristic_length:
            delta_2 = delta_2 * h * h
            delta_3 = delta_3 * h * h

        kappa = rho * k / mu
        inv_kappa = 1.0 / kappa

        # Classical mixed terms
        a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx
        L = -delta_0 * f * v * dx

        # DG terms
        a += jump(w, n) * avg(p) * dS - avg(v) * jump(q, n) * dS

        # Edge stabilizing terms
        a += (eta_q * h_avg) * avg(inv_kappa) * (
            jump(q, n) * jump(w, n)) * dS + (eta_p / h_avg) * avg(kappa) * dot(
                jump(v, n), jump(p, n)) * dS

        # Add the contributions of the pressure boundary conditions to L
        for pboundary, iboundary in bcs_p:
            L -= pboundary * dot(w, n) * ds(iboundary)

        # Stabilizing terms
        a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)),
                              delta_0 * inv_kappa * w + grad(v)) * dx)
        a += delta_2 * inv_kappa * div(q) * div(w) * dx
        a += delta_3 * inner(kappa * curl(inv_kappa * q), curl(
            inv_kappa * w)) * dx
        L += delta_2 * inv_kappa * f * div(w) * dx

        return a, L
Example #3
0
def min_mesh_size(mesh):
    """Calculate minimum cell diameter in mesh

    Args:
        mesh ([type]): [description]

    Returns:
        float: [description]
    """
    DG0 = fd.FunctionSpace(mesh, "DG", 0)
    h_sizes = fd.assemble(
        fd.CellDiameter(mesh) / fd.CellVolume(mesh) * fd.TestFunction(DG0) *
        fd.dx).dat.data_ro
    local_min_size = np.max(h_sizes)
    min_size = mesh.comm.allreduce(local_min_size, op=MPI.MAX)
    return min_size
Example #4
0
def penalty(u):
    r"""Return the penalty of the shallow ice action functional

    The penalty of the shallow ice action functional is 

    .. math::
        E(u) = \frac{1}{2}\int_\Omega l^2\nabla u\cdot \nabla u\; dx

    Parameters
    ----------
    u : firedrake.Function
        ice velocity

    Returns
    -------
    firedrake.Form
    """
    l = 2 * firedrake.CellDiameter(u.ufl_domain())
    return .5 * l**2 * inner(grad(u), grad(u))
Example #5
0
def penalty(**kwargs):
    r"""Return the penalty of the shallow ice action functional

    The penalty for the shallow ice action functional is

    .. math::
        E(u) = \frac{1}{2}\int_\Omega l^2\nabla u\cdot \nabla u\; dx

    Parameters
    ----------
    velocity : firedrake.Function
    thickness : firedrake.Function

    Returns
    -------
    firedrake.Form
    """
    u, h = get_kwargs_alt(kwargs, ('velocity', 'thickness'), ('u', 'h'))
    l = 2 * firedrake.max_value(firedrake.CellDiameter(u.ufl_domain()), 5 * h)
    return .5 * l**2 * inner(grad(u), grad(u))
Example #6
0
def heat_exchanger_optimization(mu=0.03, n_iters=1000):

    output_dir = "2D/"

    path = os.path.abspath(__file__)
    dir_path = os.path.dirname(path)
    mesh = fd.Mesh(f"{dir_path}/2D_mesh.msh")
    # Perturb the mesh coordinates. Necessary to calculate shape derivatives
    S = fd.VectorFunctionSpace(mesh, "CG", 1)
    s = fd.Function(S, name="deform")
    mesh.coordinates.assign(mesh.coordinates + s)

    # Initial level set function
    x, y = fd.SpatialCoordinate(mesh)
    PHI = fd.FunctionSpace(mesh, "CG", 1)
    phi_expr = sin(y * pi / 0.2) * cos(x * pi / 0.2) - fd.Constant(0.8)
    # Avoid recording the operation interpolate into the tape.
    # Otherwise, the shape derivatives will not be correct
    with fda.stop_annotating():
        phi = fd.interpolate(phi_expr, PHI)
        phi.rename("LevelSet")
        fd.File(output_dir + "phi_initial.pvd").write(phi)

    # Physics
    mu = fd.Constant(mu)  # viscosity
    alphamin = 1e-12
    alphamax = 2.5 / (2e-4)
    parameters = {
        "mat_type": "aij",
        "ksp_type": "preonly",
        "ksp_converged_reason": None,
        "pc_type": "lu",
        "pc_factor_mat_solver_type": "mumps",
    }
    stokes_parameters = parameters
    temperature_parameters = parameters
    u_inflow = 2e-3
    tin1 = fd.Constant(10.0)
    tin2 = fd.Constant(100.0)

    P2 = fd.VectorElement("CG", mesh.ufl_cell(), 2)
    P1 = fd.FiniteElement("CG", mesh.ufl_cell(), 1)
    TH = P2 * P1
    W = fd.FunctionSpace(mesh, TH)

    U = fd.TrialFunction(W)
    u, p = fd.split(U)
    V = fd.TestFunction(W)
    v, q = fd.split(V)

    epsilon = fd.Constant(10000.0)

    def hs(phi, epsilon):
        return fd.Constant(alphamax) * fd.Constant(1.0) / (
            fd.Constant(1.0) + exp(-epsilon * phi)) + fd.Constant(alphamin)

    def stokes(phi, BLOCK_INLET_MOUTH, BLOCK_OUTLET_MOUTH):
        a_fluid = mu * inner(grad(u), grad(v)) - div(v) * p - q * div(u)
        darcy_term = inner(u, v)
        return (a_fluid * dx + hs(phi, epsilon) * darcy_term * dx(0) +
                alphamax * darcy_term *
                (dx(BLOCK_INLET_MOUTH) + dx(BLOCK_OUTLET_MOUTH)))

    # Dirichlet boundary conditions
    inflow1 = fd.as_vector([
        u_inflow * sin(
            ((y - (line_sep -
                   (dist_center + inlet_width))) * pi) / inlet_width),
        0.0,
    ])
    inflow2 = fd.as_vector([
        u_inflow * sin(((y - (line_sep + dist_center)) * pi) / inlet_width),
        0.0,
    ])

    noslip = fd.Constant((0.0, 0.0))

    # Stokes 1
    bcs1_1 = fd.DirichletBC(W.sub(0), noslip, WALLS)
    bcs1_2 = fd.DirichletBC(W.sub(0), inflow1, INLET1)
    bcs1_3 = fd.DirichletBC(W.sub(1), fd.Constant(0.0), OUTLET1)
    bcs1_4 = fd.DirichletBC(W.sub(0), noslip, INLET2)
    bcs1_5 = fd.DirichletBC(W.sub(0), noslip, OUTLET2)
    bcs1 = [bcs1_1, bcs1_2, bcs1_3, bcs1_4, bcs1_5]

    # Stokes 2
    bcs2_1 = fd.DirichletBC(W.sub(0), noslip, WALLS)
    bcs2_2 = fd.DirichletBC(W.sub(0), inflow2, INLET2)
    bcs2_3 = fd.DirichletBC(W.sub(1), fd.Constant(0.0), OUTLET2)
    bcs2_4 = fd.DirichletBC(W.sub(0), noslip, INLET1)
    bcs2_5 = fd.DirichletBC(W.sub(0), noslip, OUTLET1)
    bcs2 = [bcs2_1, bcs2_2, bcs2_3, bcs2_4, bcs2_5]

    # Forward problems
    U1, U2 = fd.Function(W), fd.Function(W)
    L = inner(fd.Constant((0.0, 0.0, 0.0)), V) * dx
    problem = fd.LinearVariationalProblem(stokes(-phi, INMOUTH2, OUTMOUTH2),
                                          L,
                                          U1,
                                          bcs=bcs1)
    solver_stokes1 = fd.LinearVariationalSolver(
        problem,
        solver_parameters=stokes_parameters,
        options_prefix="stokes_1")
    solver_stokes1.solve()
    problem = fd.LinearVariationalProblem(stokes(phi, INMOUTH1, OUTMOUTH1),
                                          L,
                                          U2,
                                          bcs=bcs2)
    solver_stokes2 = fd.LinearVariationalSolver(
        problem,
        solver_parameters=stokes_parameters,
        options_prefix="stokes_2")
    solver_stokes2.solve()

    # Convection difussion equation
    ks = fd.Constant(1e0)
    cp_value = 5.0e5
    cp = fd.Constant(cp_value)
    T = fd.FunctionSpace(mesh, "DG", 1)
    t = fd.Function(T, name="Temperature")
    w = fd.TestFunction(T)

    # Mesh-related functions
    n = fd.FacetNormal(mesh)
    h = fd.CellDiameter(mesh)
    u1, p1 = fd.split(U1)
    u2, p2 = fd.split(U2)

    def upwind(u):
        return (dot(u, n) + abs(dot(u, n))) / 2.0

    u1n = upwind(u1)
    u2n = upwind(u2)

    # Penalty term
    alpha = fd.Constant(500.0)
    # Bilinear form
    a_int = dot(grad(w), ks * grad(t) - cp * (u1 + u2) * t) * dx

    a_fac = (fd.Constant(-1.0) * ks * dot(avg(grad(w)), jump(t, n)) * dS +
             fd.Constant(-1.0) * ks * dot(jump(w, n), avg(grad(t))) * dS +
             ks("+") *
             (alpha("+") / avg(h)) * dot(jump(w, n), jump(t, n)) * dS)

    a_vel = (dot(
        jump(w),
        cp * (u1n("+") + u2n("+")) * t("+") - cp *
        (u1n("-") + u2n("-")) * t("-"),
    ) * dS + dot(w,
                 cp * (u1n + u2n) * t) * ds)

    a_bnd = (dot(w,
                 cp * dot(u1 + u2, n) * t) * (ds(INLET1) + ds(INLET2)) +
             w * t * (ds(INLET1) + ds(INLET2)) - w * tin1 * ds(INLET1) -
             w * tin2 * ds(INLET2) + alpha / h * ks * w * t *
             (ds(INLET1) + ds(INLET2)) - ks * dot(grad(w), t * n) *
             (ds(INLET1) + ds(INLET2)) - ks * dot(grad(t), w * n) *
             (ds(INLET1) + ds(INLET2)))

    aT = a_int + a_fac + a_vel + a_bnd

    LT_bnd = (alpha / h * ks * tin1 * w * ds(INLET1) +
              alpha / h * ks * tin2 * w * ds(INLET2) -
              tin1 * ks * dot(grad(w), n) * ds(INLET1) -
              tin2 * ks * dot(grad(w), n) * ds(INLET2))

    problem = fd.LinearVariationalProblem(derivative(aT, t), LT_bnd, t)
    solver_temp = fd.LinearVariationalSolver(
        problem,
        solver_parameters=temperature_parameters,
        options_prefix="temperature",
    )
    solver_temp.solve()
    # fd.solve(eT == 0, t, solver_parameters=temperature_parameters)

    # Cost function: Flux at the cold outlet
    scale_factor = 4e-4
    Jform = fd.assemble(
        fd.Constant(-scale_factor * cp_value) * inner(t * u1, n) * ds(OUTLET1))
    # Constraints: Pressure drop on each fluid
    power_drop = 1e-2
    Power1 = fd.assemble(p1 / power_drop * ds(INLET1))
    Power2 = fd.assemble(p2 / power_drop * ds(INLET2))

    phi_pvd = fd.File("phi_evolution.pvd")

    def deriv_cb(phi):
        with stop_annotating():
            phi_pvd.write(phi[0])

    c = fda.Control(s)

    # Reduced Functionals
    Jhat = LevelSetFunctional(Jform, c, phi, derivative_cb_pre=deriv_cb)
    P1hat = LevelSetFunctional(Power1, c, phi)
    P1control = fda.Control(Power1)

    P2hat = LevelSetFunctional(Power2, c, phi)
    P2control = fda.Control(Power2)

    Jhat_v = Jhat(phi)
    print("Initial cost function value {:.5f}".format(Jhat_v), flush=True)
    print("Power drop 1 {:.5f}".format(Power1), flush=True)
    print("Power drop 2 {:.5f}".format(Power2), flush=True)

    beta_param = 0.08
    # Regularize the shape derivatives only in the domain marked with 0
    reg_solver = RegularizationSolver(S,
                                      mesh,
                                      beta=beta_param,
                                      gamma=1e5,
                                      dx=dx,
                                      design_domain=0)

    tol = 1e-5
    dt = 0.05
    params = {
        "alphaC": 1.0,
        "debug": 5,
        "alphaJ": 1.0,
        "dt": dt,
        "K": 1e-3,
        "maxit": n_iters,
        "maxtrials": 5,
        "itnormalisation": 10,
        "tol_merit":
        5e-3,  # new merit can be within 0.5% of the previous merit
        # "normalize_tol" : -1,
        "tol": tol,
    }

    solver_parameters = {
        "reinit_solver": {
            "h_factor": 2.0,
        }
    }
    # Optimization problem
    problem = InfDimProblem(
        Jhat,
        reg_solver,
        ineqconstraints=[
            Constraint(P1hat, 1.0, P1control),
            Constraint(P2hat, 1.0, P2control),
        ],
        solver_parameters=solver_parameters,
    )
    results = nlspace_solve(problem, params)

    return results
wh, vh, mu_h = fd.TestFunctions(W)

# 3.2) Set initial conditions
# ---- previous solution
# concentrations
c0 = fd.Function(DG1, name="c0")
c0.assign(0.0)

# ----------------------
# 3.4) Variational Form
# ----------------------
# coefficients
dt = np.sqrt(tol)
dtc = fd.Constant(dt)
n = fd.FacetNormal(mesh)
h = fd.sqrt(2) * fd.CellVolume(mesh) / fd.CellDiameter(mesh)

# advective velocity
velocity = fd.Function(vDG1)
velocity.interpolate(v_inlet)
vnorm = fd.sqrt(fd.dot(velocity, velocity))

# upwind term
vn = 0.5 * (fd.dot(velocity, n) + abs(fd.dot(velocity, n)))
cupw = fd.conditional(fd.dot(velocity, n) > 0, ch, lmbd_h)

# Diffusion tensor
Diff = fd.Identity(mesh.geometric_dimension()) * Dm
# Diff = fd.Identity(mesh.geometric_dimension())*(Dm + d_t*vnorm) + \
#     fd.Constant(d_l-d_t)*fd.outer(velocity, velocity)/vnorm
Example #8
0
def penalty_low(**kwargs):
    u = kwargs["velocity"]
    h = kwargs["thickness"]
    l = 2 * max_value(firedrake.CellDiameter(u.ufl_domain()), h)
    return 0.5 * l**2 * inner(grad(u), grad(u))
Example #9
0
    def sdhm_form(self, problem, mesh, bcs_p, bcs_u):
        rho = problem.rho
        mu = problem.mu
        k = problem.k
        f = problem.f

        q, p, lambda_h = fire.split(self.solution)
        w, v, mu_h = fire.TestFunctions(self._W)

        n = fire.FacetNormal(mesh)
        h = fire.CellDiameter(mesh)

        # Stabilizing parameters
        has_mesh_characteristic_length = True
        beta_0 = fire.Constant(1e-15)
        delta_0 = fire.Constant(1)
        delta_1 = fire.Constant(-1 / 2)
        delta_2 = fire.Constant(1 / 2)
        delta_3 = fire.Constant(1 / 2)

        # h_avg = (h('+') + h('-')) / 2.
        beta = beta_0 / h
        beta_avg = beta_0 / h("+")
        if has_mesh_characteristic_length:
            delta_2 = delta_2 * h * h
            delta_3 = delta_3 * h * h

        kappa = rho * k / mu
        inv_kappa = 1.0 / kappa

        # Classical mixed terms
        a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx
        L = -delta_0 * f * v * dx

        # Hybridization terms
        a += lambda_h("+") * dot(w, n)("+") * dS + mu_h("+") * dot(q,
                                                                   n)("+") * dS
        a += beta_avg * kappa("+") * (lambda_h("+") - p("+")) * (mu_h("+") -
                                                                 v("+")) * dS

        # Add the contributions of the pressure boundary conditions to L
        primal_bc_markers = list(mesh.exterior_facets.unique_markers)
        for pboundary, iboundary in bcs_p:
            primal_bc_markers.remove(iboundary)
            a += (pboundary * dot(w, n) + mu_h * dot(q, n)) * ds(iboundary)
            a += beta * kappa * (lambda_h - pboundary) * mu_h * ds(iboundary)

        unprescribed_primal_bc = primal_bc_markers
        for bc_marker in unprescribed_primal_bc:
            a += (lambda_h * dot(w, n) + mu_h * dot(q, n)) * ds(bc_marker)
            a += beta * kappa * lambda_h * mu_h * ds(bc_marker)

        # Add the (weak) contributions of the velocity boundary conditions to L
        for uboundary, iboundary, component in bcs_u:
            if component is not None:
                dim = mesh.geometric_dimension()
                bc_array = []
                for _ in range(dim):
                    bc_array.append(0.0)
                bc_array[component] = uboundary
                bc_as_vector = fire.Constant(bc_array)
                L += mu_h * dot(bc_as_vector, n) * ds(iboundary)
            else:
                L += mu_h * dot(uboundary, n) * ds(iboundary)

        # Stabilizing terms
        a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)),
                              delta_0 * inv_kappa * w + grad(v)) * dx)
        a += delta_2 * inv_kappa * div(q) * div(w) * dx
        a += delta_3 * inner(kappa * curl(inv_kappa * q), curl(
            inv_kappa * w)) * dx
        L += delta_2 * inv_kappa * f * div(w) * dx

        return a, L
Example #10
0
    def cgls_form(self, problem, mesh, bcs_p):
        rho = problem.rho
        mu = problem.mu
        k = problem.k
        f = problem.f

        q, p = fire.TrialFunctions(self._W)
        w, v = fire.TestFunctions(self._W)

        n = fire.FacetNormal(mesh)

        # Stabilizing parameters
        h = fire.CellDiameter(mesh)
        has_mesh_characteristic_length = True
        delta_0 = fire.Constant(1)
        delta_1 = fire.Constant(-1 / 2)
        delta_2 = fire.Constant(1 / 2)
        delta_3 = fire.Constant(1 / 2)

        # Some good stabilizing methods that I use:
        # 1) CLGS (Correa and Loula method, it's a Galerkin Least-Squares residual formulation):
        #   * delta_0 = 1
        #   * delta_1 = -1/2
        #   * delta_2 = 1/2
        #   * delta_3 = 1/2
        # 2) CLGS (Div):
        #   * delta_0 = 1
        #   * delta_1 = -1/2
        #   * delta_2 = 1/2
        #   * delta_3 = 0
        # 3) Original Hughes's adjoint (variational multiscale) method (HVM):
        #   * delta_0 = -1
        #   * delta_1 = 1/2
        #   * delta_2 = 0
        #   * delta_3 = 0
        # 4) HVM (Div):
        #   * delta_0 = -1
        #   * delta_1 = 1/2
        #   * delta_2 = 1/2
        #   * delta_3 = 0
        # 5) Enhanced HVM (eHVM, this one is proposed by me. It was never published before):
        #   * delta_0 = -1
        #   * delta_1 = 1/2
        #   * delta_2 = 1/2
        #   * delta_3 = 1/2

        # I'm currently investigating these modifications in my thesis. They work good for DG methods.
        if has_mesh_characteristic_length:
            delta_2 = delta_2 * h * h
            delta_3 = delta_3 * h * h

        kappa = rho * k / mu
        inv_kappa = 1.0 / kappa

        # Classical mixed terms
        a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx
        L = -delta_0 * f * v * dx

        # Add the contributions of the pressure boundary conditions to L
        for pboundary, iboundary in bcs_p:
            L -= pboundary * dot(w, n) * ds(iboundary)

        # Stabilizing terms
        a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)),
                              delta_0 * inv_kappa * w + grad(v)) * dx)
        a += delta_2 * inv_kappa * div(q) * div(w) * dx
        a += delta_3 * inner(kappa * curl(inv_kappa * q), curl(
            inv_kappa * w)) * dx
        L += delta_2 * inv_kappa * f * div(w) * dx

        return a, L