Example #1
0
def collect_exp_data(wdir):

    load_config('%s/input.py'%wdir)
    conf['bootstrap']=False
    istep=core.get_istep()
    core.mod_conf(istep) #--set conf as specified in istep   

    resman=RESMAN(nworkers=1,parallel=False,datasets=True)

    obsres={}
    if 'idis'   in conf['datasets'] : obsres['idis']   = resman.idisres
    if 'pidis'  in conf['datasets'] : obsres['pidis']  = resman.pidisres
    if 'sidis'  in conf['datasets'] : obsres['sidis']  = resman.sidisres
    if 'psidis' in conf['datasets'] : obsres['psidis'] = resman.psidisres
    if 'dy'     in conf['datasets'] : obsres['dy']     = resman.dyres
    if 'sia'    in conf['datasets'] : obsres['sia']    = resman.siares
   

    print('\ncollecting exp data using the setup as in %s\n'%wdir)

    data={} 
    for reaction in obsres:
        tabs={}
        for idx in obsres[reaction].tabs:
            tabs[idx]={}
            tabs[idx]['value']=obsres[reaction].tabs[idx]['value']
            tabs[idx]['alpha']=obsres[reaction].tabs[idx]['alpha']
        data[reaction]=tabs

    save(data,'%s/expdata.dat'%(wdir))

    #--close resman
    resman.shutdown()
Example #2
0
def gen_samples(wdir,nsamples=100,nsize=10):

    load_config('%s/input.py'%wdir)
    conf['bootstrap']=False
    istep=core.get_istep()
    core.mod_conf(istep) #--set conf as specified in istep   

    resman=RESMAN(nworkers=5,parallel=True,datasets=True)
    parman=resman.parman
    order=parman.order

    obsres={}
    if 'idis'   in conf['datasets'] : obsres['idis']   = resman.idisres
    if 'pidis'  in conf['datasets'] : obsres['pidis']  = resman.pidisres
    if 'sidis'  in conf['datasets'] : obsres['sidis']  = resman.sidisres
    if 'psidis' in conf['datasets'] : obsres['psidis'] = resman.psidisres
    if 'dy'     in conf['datasets'] : obsres['dy']     = resman.dyres
    if 'sia'    in conf['datasets'] : obsres['sia']    = resman.siares
   

    print('\ngen ml samples using the setup as in %s\n'%wdir)

    checkdir('%s/mlsamples'%wdir)

    data=gen_dataframe(parman.order,obsres,nsize)

    for _ in range(nsamples):
        lprint('progress: %d/%d'%(_,nsamples))
        par=parman.gen_flat(setup=True)
        res,rres,nres=resman.get_residuals(par)

        #--fill dataframe
        i=data['size']
        data['params'][i]=par
        for reaction in obsres:
            for idx in data['reactions'][reaction]:
                prediction=copy.copy(obsres[reaction].tabs[idx]['prediction'])
                data['reactions'][reaction][idx][i]=prediction
        data['size']+=1

        if data['size']==nsize:
            save(data,'%s/mlsamples/%s'%(wdir,id_generator(12)))
            data=gen_dataframe(parman.order,obsres,nsize)

    print     

    #--close resman
    resman.shutdown()
Example #3
0
class MAXLIKE:
    def __init__(self,
                 inputfile,
                 nworkers=2,
                 verbose=False,
                 msrhook=None,
                 prior=None,
                 seed=None):

        self.nworkers = nworkers
        self.inputfile = inputfile
        self.verbose = verbose
        self.msrhook = msrhook
        self.prior = prior
        self.seed = seed

    def set_counters(self):
        self.chi2tot = 1e1000
        self.dchi2 = 0
        self.t0 = time.time()
        self.cnt = 0

    def print_status(self, res, rres, nres):

        #--update status parameters
        shifts = self.parman.shifts
        etime = (time.time() - self.t0) / 60
        npts = res.size
        chi2 = np.sum(res**2)
        rchi2 = np.sum(rres**2)
        nchi2 = np.sum(nres**2)
        chi2tot = chi2 + rchi2 + nchi2
        dchi2 = chi2tot - self.chi2tot
        if shifts > 2:
            if chi2tot < self.chi2tot:
                self.dchi2 = self.chi2tot - chi2tot
                self.chi2tot = chi2tot

        #--build header
        status = []
        status.append('JAM FITTER')
        status.append('count = %d' % self.cnt)
        status.append('elapsed time(mins)=%f' % etime)
        status.append('shifts  = %d' % shifts)
        status.append('npts    = %d' % npts)
        status.append('chi2    = %f' % chi2)
        status.append('rchi2   = %f' % rchi2)
        status.append('nchi2   = %f' % nchi2)
        status.append('chi2tot = %f' % (chi2tot))
        status.append('dchi2(iter)  = %f' % self.dchi2)
        status.append('dchi2(local) = %f' % dchi2)

        #--special output for pdfs
        #if 'pdf'  in conf['params']:
        #    for _ in conf['pdf'].sr:
        #        status.append('pdf %s:%f'%(_,conf['pdf'].sr[_]))

        #    #status.append('proton uvsr = %f'%conf['pdf'].sr['uvsr'])
        #    #status.append('proton dvsr = %f'%conf['pdf'].sr['dvsr'])
        #    #status.append('proton msr  = %f'%conf['pdf'].sr['msr'])
        #    #if 'svsr' in conf['pdf'].sr: status.append('proton svsr = %f'%conf['pdf'].sr['svsr'])

        #--report from resman
        status.append('')
        status.extend(self.resman.gen_report())

        #--report from parman
        parstatus = self.parman.gen_report()

        #--print into screen
        nstatus = len(status)
        nparstatus = len(parstatus)
        os.system('clear')
        for i in range(max([nstatus, nparstatus])):
            data = []
            if i < nstatus: data.append(status[i])
            else: data.append('')
            if i < nparstatus: data.append(parstatus[i])
            else: data.append('')
            print '%-120s  | %s' % tuple(data)
        return status, parstatus

    def get_residuals(self, par):
        res, rres, nres = self.resman.get_residuals(par)
        self.cnt += 1
        if self.cnt % conf['verbose'] == 0:
            self.print_status(res, rres, nres)
        if len(rres) != 0: res = np.append(res, rres)
        if len(nres) != 0: res = np.append(res, nres)
        return res

    def checklimits(self):

        for k in conf['params']:
            for kk in conf['params'][k]:
                if conf['params'][k][kk]['fixed'] != False: continue
                p = conf['params'][k][kk]['value']
                pmin = conf['params'][k][kk]['min']
                pmax = conf['params'][k][kk]['max']
                if p < pmin or p > pmax:
                    print '%s-%s out of limits. ' % (k, kk)
                    sys.exit()

        for k in conf['datasets']:
            for kk in conf['datasets'][k]['norm']:
                p = conf['datasets'][k]['norm'][kk]['value']
                pmin = conf['datasets'][k]['norm'][kk]['min']
                pmax = conf['datasets'][k]['norm'][kk]['max']
                if p < pmin or p > pmax:
                    print '%s-%s out of limits. ' % (k, kk)
                    sys.exit()

    def get_conf(self, _conf, step):

        conf = copy.deepcopy(_conf)

        #--remove pdf/ff that is not in the step
        distributions = conf['params'].keys()  #--pdf,ppdf,ffpion,ffkaon,...
        for dist in distributions:
            if dist in step['active distributions']:
                continue
            else:
                del conf['params'][dist]

        #--set fixed==True for passive distributions
        if 'passive distributions' in step:
            for dist in step['passive distributions']:
                for par in conf['params'][dist]:
                    conf['params'][dist][par]['fixed'] = True
                    #--set prior parameters values for passive distributions
                    for istep in step['dep']:
                        prior_order = self.order[istep]
                        prior_params = self.params[istep]
                        for i in range(len(prior_order)):
                            _, _dist, _par = prior_order[i]
                            if dist == _dist and par == _par:
                                conf['params'][dist][par][
                                    'value'] = prior_params[i]

        #--another version for fixed parameters
        if 'fix parameters' in step:
            for dist in step['fix parameters']:
                print dist
                for par in step['fix parameters'][dist]:
                    print par
                    conf['params'][dist][par]['fixed'] = True
                    #--set prior parameters values for passive distributions
                    for istep in step['dep']:
                        prior_order = self.order[istep]
                        prior_params = self.params[istep]
                        for i in range(len(prior_order)):
                            _, _dist, _par = prior_order[i]
                            if dist == _dist and par == _par:
                                conf['params'][dist][par][
                                    'value'] = prior_params[i]

        #--remove datasets not in the step
        datasets = conf['datasets'].keys()  #--idis,dy,....
        for dataset in datasets:
            if dataset in step['datasets']:

                #--remove entry from xlsx
                xlsx = conf['datasets'][dataset]['xlsx'].keys()
                for idx in xlsx:
                    if idx in step['datasets'][dataset]:
                        continue
                    else:
                        del conf['datasets'][dataset]['xlsx'][idx]

                #--remove entry from norm
                norm = conf['datasets'][dataset]['norm'].keys()
                for idx in norm:
                    if idx in step['datasets'][dataset]:
                        continue
                    else:
                        del conf['datasets'][dataset]['norm'][idx]
            else:
                del conf['datasets'][dataset]

        return conf

    def get_bounds(self):
        order = self.parman.order

        bounds_min = []
        bounds_max = []
        for entry in order:
            i, k, kk = entry
            if i == 1:
                p = conf['params'][k][kk]['value']
                pmin = conf['params'][k][kk]['min']
                pmax = conf['params'][k][kk]['max']
                if p < pmin or p > pmax:
                    msg = '%s/%s outsize the limits %f %f %f' % (k, kk, p,
                                                                 pmin, pmax)
                    raise ValueError(msg)
                bounds_min.append(conf['params'][k][kk]['min'])
                bounds_max.append(conf['params'][k][kk]['max'])
            elif i == 2:
                p = conf['datasets'][k]['norm'][kk]['value']
                pmin = conf['datasets'][k]['norm'][kk]['min']
                pmax = conf['datasets'][k]['norm'][kk]['max']
                if p < pmin or p > pmax:
                    msg = '%s/%s outsize the limits %f %f %f' % (k, kk, p,
                                                                 pmin, pmax)
                    raise ValueError(msg)
                bounds_min.append(conf['datasets'][k]['norm'][kk]['min'])
                bounds_max.append(conf['datasets'][k]['norm'][kk]['max'])

        return (bounds_min, bounds_max)

    def get_guess(self, dep=[]):

        order = self.parman.order
        if conf['flat par']:
            if self.seed != None: np.random.seed(12345)
            guess = self.parman.gen_flat()
        else:
            guess = self.parman.par

        #--retrieve priors from previous steps according to dep
        if len(dep) > 0:

            for istep in dep:
                prior_order = self.order[istep]
                prior_params = self.params[istep]
                #--compare and match prior order to current order
                for i in range(len(prior_order)):
                    for j in range(len(order)):
                        if order[j] == prior_order[i]:
                            guess[j] = prior_params[i]

        return guess

    def gen_summary(self, step, par):

        res, rres, nres = self.resman.get_residuals(par)
        status, parstatus = self.print_status(res, rres, nres)
        status.extend(parstatus)
        status = [l + '\n' for l in status]
        fname = 'step-%d.summary' % step
        F = open(fname, 'w')
        F.writelines(status)
        F.close()

    def get_par(self, step, dep=[]):

        #--current value must be within min and max
        self.checklimits()

        #--initialize resman
        self.resman = RESMAN(self.nworkers)
        self.parman = self.resman.parman

        #--setups
        guess = self.get_guess(dep)
        bounds = self.get_bounds()
        self.set_counters()
        self.parman.set_new_params(guess, initial=True)

        #--run fit
        fit = least_squares(self.get_residuals,
                            guess,
                            bounds=bounds,
                            method='trf',
                            ftol=conf['ftol'])

        #--generate summary. It will update system with the final results
        self.gen_summary(step, fit.x)

        #--close resman
        self.resman.shutdown()

        return fit.x

    def gen_output(self, istep):
        """
        modification of the input is done using a dedicated scrip
        at tools/inputmod.py
        """
        inputmod = INPUTMOD(self.inputfile)

        for kind in conf['params']:
            for par in conf['params'][kind]:
                value = conf['params'][kind][par]['value']
                inputmod.mod_par(kind, par, 'value', value)

        for reaction in conf['datasets']:
            for idx in conf['datasets'][reaction]['norm']:
                value = conf['datasets'][reaction]['norm'][idx]['value']
                inputmod.mod_norm(reaction, idx, 'value', value)

        fname = 'output-%d.py' % istep
        inputmod.gen_input(fname)

    def run(self):

        global conf

        load_config(self.inputfile)

        #--modify confs
        if 'hooks' not in conf:
            conf['hooks'] = {}
        if self.msrhook != None:
            conf['hooks']['msr'] = self.msrhook
        if self.verbose == False:
            conf['verbose'] = 1
        else:
            conf['verbose'] = self.verbose

        #--backup conf(after mods)
        conf_bkp = copy.deepcopy(conf)

        #--decide if the input should be modified
        output = True
        if 'bootstrap' in conf and conf['bootstrap'] == True: output = False

        if 'steps' in conf:
            isteps = sorted(conf['steps'])

            self.order = {}
            self.params = {}
            chi2 = {}

            if self.prior != None:
                prior = load(self.prior)
                self.order = prior['order']
                self.params = prior['params']
                chi2 = prior['chi2']
                prior_steps = sorted(self.order.keys())
                isteps = [i for i in isteps if i not in prior_steps]

            for i in isteps:
                step = conf['steps'][i]
                conf.update(copy.deepcopy(conf_bkp))
                conf.update(self.get_conf(conf_bkp, step))

                print
                msg = '--step %d: ' % i
                msg += 'npQCD objects ='
                for _ in conf['params'].keys():
                    msg += _ + ' '
                msg += 'datasets ='
                for _ in conf['datasets'].keys():
                    msg += _ + ' '
                print msg

                par = self.get_par(i, step['dep'])
                self.order[i] = self.parman.order[:]
                self.params[i] = par[:]
                chi2[i] = self.resman.get_chi2()
                if output: self.gen_output(i)

            #--store the results from steps
            data = {'order': self.order, 'params': self.params, 'chi2': chi2}
            if self.prior == None:
                fname = '%s.msr' % id_generator(size=12)
            else:
                fname = self.prior.split('/')[-1]
            save(data, fname)

            #--run hooks
            if 'msr' in conf['hooks']:  #--ms==multi steps
                cmd = conf['hooks']['msr'].replace('<<fname>>', fname)
                os.system(cmd)
        else:
            par = self.get_par(0)
            if output: self.gen_output(0)

        #--run remining hooks if available
        for _ in conf['hooks']:
            if _ == 'msr': continue
            os.system(conf['hooks'][_])