Example #1
0
    def __init__(self):
        """Initialise base fitness function class and its variables.
        """
        super().__init__()
        self.num_obj = 2
        dummyfit = base_ff()
        dummyfit.maximise = True
        self.fitness_functions = [dummyfit, dummyfit]
        self.default_fitness = [-1, -1]
        t = time.localtime()
        current_time = time.strftime("%H-%M-%S", t)
        self.filename = current_time + ".txt"

        in_file = "../data/haralick02_50K.csv"
        df = pd.read_csv(in_file)
        df.sort_values(by=['Label'], inplace=True)

        haralick_features = []
        for i in range(104):
            feature = "x" + str(i)
            haralick_features.append(feature)
        self.data = df[haralick_features]
        self.labels = df['Label']
        self.training = self.data
        self.test = self.data
        self.n_vars = len(self.data)
        self.test1 = 0
        self.test2 = 0
Example #2
0
 def __init__(self):
     super().__init__()
     self.num_obj = 2
     fit = base_ff()
     fit.maximise = True
     self.fitness_functions = [fit, fit]
     self.default_fitness = [float('nan'), float('nan')]
Example #3
0
 def __init__(self):
     super().__init__()
     self.filename = '/pesquisa/phenotypes.csv'
     self.num_obj = 2
     fit = base_ff()
     fit.maximise = True
     self.fitness_functions = [fit, fit]
     self.default_fitness = [float('nan'), float('nan')]
Example #4
0
 def __init__(self):
     super().__init__()
     self.num_obj = 2
     fit = base_ff()
     fit.maximise = True
     self.fitness_functions = [fit, fit]
     self.default_fitness = [float('nan'), float('nan')]
     tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
     tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu)
     self.tpu_strategy = tpu_strategy
Example #5
0
    def __init__(self):

        # Initialise base fitness function class.
        super().__init__()

        # Set list of individual fitness functions.
        self.num_obj = 2
        dummyfit = base_ff()
        dummyfit.maximise = True
        self.fitness_functions = [dummyfit, dummyfit]
        self.default_fitness = [float('nan'), float('nan')]
Example #6
0
    def __init__(self):

        # Initialise base fitness function class.
        super().__init__()

        # Set list of individual fitness functions.
        self.num_obj = 2
        dummyfit = base_ff()
        dummyfit.maximise = True
        self.fitness_functions = [dummyfit, dummyfit]
        self.default_fitness = [float('nan'), float('nan')]
Example #7
0
    def __init__(self):
        # Initialise base fitness function class.
        super().__init__()
        test_set = face(['./deeplearn/test.hdf5'])
        train_set = face(['./deeplearn/train.hdf5'])
        self.test_loader = DataLoader(test_set,
                                      shuffle=False,
                                      batch_size=32,
                                      num_workers=1)

        self.train_loader = DataLoader(train_set,
                                       batch_size=32,
                                       shuffle=False,
                                       num_workers=1,
                                       pin_memory=True)
        # Set list of individual fitness functions.
        self.num_obj = 2
        dummyfit = base_ff()
        dummyfit.maximise = True
        self.fitness_functions = [dummyfit, dummyfit]
        self.default_fitness = [float('nan'), float('nan')]